

Net-Zero America - Utah data

October 29, 2021 (updated November 17, 2023)

See the Data Sheet Guide for explanations of the contents of this document. The data herein underlie graphs and tables found in Princeton's Net-Zero America report:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Final Report, Princeton University, Princeton, NJ, 29 October 2021. Report available at https://net-zeroamerica.princeton.edu.

Contents

1	E+ scenario - IMPACTS - Health	1
2	E+ scenario - IMPACTS - Jobs	2
3	E+ scenario - IMPACTS - Fossil fuel industries	3
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	3
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	3
6	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	3
7	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	4
8	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	4
9	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	4
10	E+ scenario - PILLAR 2: Clean Electricity - Generation	5
11	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	5
12	E+ scenario - PILLAR 4: CCUS - CO2 capture	5
13	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	6
14	E+ scenario - PILLAR 4: CCUS - CO2 storage	6
15	E+ scenario - PILLAR 6: Land sinks - Forests	6
16	E+ scenario - PILLAR 6: Land sinks - Agriculture	8
17	E- scenario - IMPACTS - Health	9
18	E- scenario - IMPACTS - Jobs	10
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	12
20	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	12
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	12
22	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	12
23	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	12
24	E- scenario - PILLAR 2: Clean Electricity - Generating capacity	13
25	E- scenario - PILLAR 6: Land sinks - Forests	13
26	E- scenario - PILLAR 6: Land sinks - Agriculture	15
27	E+RE+ scenario - IMPACTS - Health	16
28	E+RE+ scenario - IMPACTS - Jobs	17
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	18
30	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand .	18
31	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	19
32	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	19
33	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	19
34	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	19
35	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	20
36	E+RE+ scenario - PILLAR 6: Land sinks - Forests	20
37	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	23
38	E+RE- scenario - IMPACTS - Health	23
39	E+RE- scenario - IMPACTS - Jobs	25
40	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	26
41	${\sf E+RE-scenario-PILLAR1:Efficiency/Electrification-Electricitydemand} \ \ . \ \ .$	26
42	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	26
43	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	26

44	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	27
45	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	27
46	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	27
47	E+RE- scenario - PILLAR 6: Land sinks - Forests	28
48	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	30
49	E-B+ scenario - IMPACTS - Health	31
50	E-B+ scenario - IMPACTS - Jobs	32
51	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	33
52	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	33
53	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	33
54	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	34
55	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	34
56	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	34
57	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	34
58	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	35
59	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	35
60	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	35
61	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	35
62	E-B+ scenario - PILLAR 6: Land sinks - Forests	36
63	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	38
64	REF scenario - IMPACTS - Health	39
65	REF scenario - IMPACTS - Jobs	40
66	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	41
67	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	42
68	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	42
69	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	42
70	REF scenario - PILLAR 2: Clean Electricity - Generating capacity	42
71	REF scenario - PILLAR 2: Clean Electricity - Generation	43
72	REF scenario - PILLAR 6: Land sinks - Forests - REF only	43
73	REF scenario - PILLAR 6: Land sinks - Forests	43

Table 1: E+ scenario - IMPACTS - Health

lable 1: E+ scenario - IMPACTS - Health							
Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		17.8	0.021	0.021	0.018	0.012	0
Fuel Comb - Electric Generation - Coal							
(deaths)							
Premature deaths from air pollution -		4.37	3.31	2.48	2.19	1.72	1.28
Fuel Comb - Electric Generation - Natural							
Gas (deaths)							
Premature deaths from air pollution -		83.8	81.5	64.3	38.3	18	7.23
Mobile - On-Road (deaths)		00.0	00	0	00.0		0
Premature deaths from air pollution - Gas		3.94	3.78	3	1.9	1.04	0.599
Stations (deaths)		0.74	0.10	0	1.7	1.04	0.077
Premature deaths from air pollution -		16.6	15.9	12.3	7.43	3.73	1.49
Fuel Comb - Residential - Natural Gas		10.0	13.9	12.5	1.43	3.13	1.47
(deaths)		0.075	0.070	0.057	0.000	0.000	0.010
Premature deaths from air pollution -		0.075	0.068	0.054	0.039	0.028	0.019
Fuel Comb - Residential - Oil (deaths)				2 - 2 2			
Premature deaths from air pollution -		0.626	0.623	0.533	0.39	0.241	0.134
Fuel Comb - Residential - Other (deaths)							
Premature deaths from air pollution -		0.053	0.053	0.052	0.051	0.05	0.048
Fuel Comb - Comm/Institutional - Coal							
(deaths)							
Premature deaths from air pollution -		5.19	4.84	3.82	2.47	1.34	0.6
Fuel Comb - Comm/Institutional - Natural							
Gas (deaths)							
Premature deaths from air pollution -		0.423	0.351	0.286	0.224	0.165	0.11
Fuel Comb - Comm/Institutional - Oil		0.120	0.001	0.200	0.22	0.100	0
(deaths)							
Premature deaths from air pollution -		0.842	0.734	0.62	0.499	0.376	0.253
		0.042	0.134	0.02	0.477	0.370	0.233
Fuel Comb - Comm/Institutional - Other							
(deaths)		0.100	0.005	0.007	0.000	0.001	
Premature deaths from air pollution -		0.188	0.025	0.024	0.022	0.021	0.02
Industrial Processes - Coal Mining							
(deaths)							
Premature deaths from air pollution -		21.4	20.7	19.3	15.4	11.7	7.37
Industrial Processes - Oil & Gas							
Production (deaths)							
Monetary damages from air pollution -		158	0.183	0.183	0.163	0.107	0
Fuel Comb - Electric Generation - Coal							
(million \$2019)							
Monetary damages from air pollution -		38.7	29.3	22	19.4	15.2	11.3
Fuel Comb - Electric Generation - Natural							
Gas (million \$2019)							
Monetary damages from air pollution -		745	724	572	341	160	64.3
Mobile - On-Road (million \$2019)		0		5.2	· · ·	.55	2 110
Monetary damages from air pollution -		34.9	33.5	26.6	16.8	9.17	5.31
Gas Stations (million \$2019)		34.7	33.5	20.0	10.0	7.11	3.31
Monetary damages from air pollution -		147	141	109	65.8	33.1	13.2
		141	141	109	65.6	33.1	13.2
Fuel Comb - Residential - Natural Gas							
(million \$2019)		0.440		0.470	0.017	2011	
Monetary damages from air pollution -		0.668	0.6	0.479	0.347	0.244	0.165
Fuel Comb - Residential - Oil (million							
\$2019)							
Monetary damages from air pollution -		5.55	5.52	4.73	3.46	2.13	1.19
Fuel Comb - Residential - Other (million							
\$2019)							
Monetary damages from air pollution -		0.473	0.47	0.463	0.453	0.439	0.422
Fuel Comb - Comm/Institutional - Coal							
(million \$2019)							
Monetary damages from air pollution -		46	42.9	33.8	21.9	11.9	5.31
Fuel Comb - Comm/Institutional - Natural		-		_			-
Gas (million \$2019)							
222 (

Table 1: E+ scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		3.75	3.11	2.54	1.98	1.46	0.971
Fuel Comb - Comm/Institutional - Oil							
(million \$2019)							
Monetary damages from air pollution -		7.46	6.49	5.48	4.42	3.33	2.24
Fuel Comb - Comm/Institutional - Other							
(million \$2019)							
Monetary damages from air pollution -		1.66	0.225	0.213	0.194	0.184	0.18
Industrial Processes - Coal Mining							
(million \$2019)							
Monetary damages from air pollution -		190	184	171	137	104	65.5
Industrial Processes - Oil & Gas							
Production (million \$2019)							

Table 2: E+ scenario - IMPACTS - Jobs

2020	2025	2030	2035	2040	2045	2050
						17.2
						7,255
	3,781	4,984	5,212	4,443	3,713	3,718
						655
						1,431
	I					108
						4,109
	2,770	2,739	2,610	2,334	2,251	2,822
	3,968	6,953	6,608	5,595	5,294	5,494
	18	34.3	26.7	23.3	21.4	73.6
	0	0	0	0	0	29.4
	2,670	1,040	529	460	414	367
	4,821	11,903	11,865	9,886	9,238	9,960
	4,855	4,123	3,305	2,617	2,125	1,389
	0	0	0	0	0	0
	6,802	5,928	5,041	3,591	2,603	1,588
			4,066			8,080
						4,124
			-			10,743
	·	,	, -	-,	,	-, -
	7,191	9,105	8,819	7,692	7,153	8,228
	.				,	•
	5,237	6,163	5,842	5,010	4,588	5,156
	,	.				•
	1,244	1,476	1,397	1,209	1,125	1,290
						•
	176	199	189	168	161	193
	3,349	4,178	4,029	3,496	3,235	3,705
		.				•
	4,656	5,695	5,534	4,819	4,453	5,155
	.	.				•
	8,776	10,652	10,220	8,828	8,130	9,220
	5,535	6,833	6,562	5,683	5,251	5,964
	.	,		,	,	•
	1,510	1,852	1,778	1,530	1,398	1,566
	.	-	•	•		,
	1,307	1,554	1,490	1,293	1,195	1,391
	,	,	,	,	,	,
	15,983	19,360	18,628	16,090	14,779	16,773
						, -
	2020	4.2 4,780 3,781 4,907 470 401 2,744 2,770 3,968 18 0 2,670 4,821 4,855 0 6,802 3,397 1,263 9,977 7,191 5,237 7,191 5,237 1,244 176 3,349 4,656 8,776 5,535 1,510	4.2 12.4 4,780 6,666 3,781 4,984 4,907 3,453 470 632 401 356 2,744 3,415 2,770 2,739 3,968 6,953 18 34.3 0 0 2,670 1,040 4,821 11,903 4,855 4,123 0 0 6,802 5,928 3,397 3,395 1,263 2,786 9,977 12,266 7,191 9,105 5,237 6,163 1,244 1,476 176 199 3,349 4,178 4,656 5,695 8,776 10,652 5,535 6,833 1,510 1,852 1,307 1,554	4.2 12.4 9.37 4,780 6,666 6,701 3,781 4,984 5,212 4,907 3,453 2,594 470 632 706 401 356 302 2,744 3,415 3,383 2,770 2,739 2,610 3,968 6,953 6,608 18 34.3 26.7 0 0 0 2,670 1,040 529 4,821 11,903 11,865 4,855 4,123 3,305 0 0 0 6,802 5,928 5,041 3,397 3,395 4,066 1,263 2,786 3,292 9,977 12,266 11,877 7,191 9,105 8,819 5,237 6,163 5,842 1,244 1,476 1,397 176 199 189 3,349 4,178 4,	4.2 12.4 9.37 7.75 4,780 6,666 6,701 6,082 3,781 4,984 5,212 4,443 4,907 3,453 2,594 1,720 470 632 706 753 401 356 302 229 2,744 3,415 3,383 3,192 2,770 2,739 2,610 2,334 3,968 6,953 6,608 5,595 18 34.3 26.7 23.3 0 0 0 0 2,670 1,040 529 460 4,821 11,903 11,865 9,886 4,855 4,123 3,305 2,617 0 0 0 0 0 6,802 5,928 5,041 3,591 3,397 3,395 4,066 4,323 1,263 2,786 3,292 3,458 9,977 12,266 11,877	4.2 12.4 9.37 7.75 5.85 4,780 6,666 6,701 6,082 5,857 3,781 4,984 5,212 4,443 3,713 4,907 3,453 2,594 1,720 1,121 470 632 706 753 833 401 356 302 229 161 2,744 3,415 3,383 3,192 3,230 2,770 2,739 2,610 2,334 2,251 3,968 6,953 6,608 5,595 5,294 18 34.3 26.7 23.3 21.4 0 0 0 0 0 2,670 1,040 529 460 414 4,821 11,903 11,865 9,886 9,238 4,855 4,123 3,305 2,617 2,125 0 0 0 0 0 0 6,802 5,928 5,041 3,

Table 2: E+ scen	ιανίο - ΤΜΟΛΥΤΟ	- Inhe Leontini	ındl
I ADIC Z. LT SCEII	iui iu - 1141PAG 13	- 3003 100111111	ıcuı

Item	2020	2025	2030	2035	2040	2045	2050
On-the-Job Training - All sectors - 1 to 4 years (jobs)		4,868	6,139	5,919	5,141	4,767	5,439
On-the-Job Training - All sectors - 4 to 10 years (jobs)		1,441	1,881	1,818	1,599	1,512	1,763
On-the-Job Training - All sectors - Over 10 years (jobs)		226	275	268	233	213	245
On-Site or In-Plant Training - All sectors - None (jobs)		3,786	4,630	4,464	3,885	3,598	4,157
On-Site or In-Plant Training - All sectors - Up to 1 year (jobs)		14,521	17,605	16,933	14,621	13,431	15,236
On-Site or In-Plant Training - All sectors - 1 to 4 years (jobs)		3,812	4,780	4,611	4,000	3,701	4,217
On-Site or In-Plant Training - All sectors - 4 to 10 years (jobs)		1,522	1,950	1,875	1,640	1,539	1,774
On-Site or In-Plant Training - All sectors - Over 10 years (jobs)		184	246	239	210	197	226
Wage income - All (million \$2019)		1,290	1,588	1,534	1,336	1,242	1,414

Table 3: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Oil consumption - Annual (million bbls)		53.1	45.7	34.9	24.7	16.6	10
Oil consumption - Cumulative (million							1,076
bbls)							
Oil production - Annual (million bbls)		48	48.2	48.1	38.1	31	20.6
Natural gas consumption - Annual (tcf)		189	159	128	96	60.4	41.9
Natural gas consumption - Cumulative							3,842
(tcf)							
Natural gas production - Annual (tcf)		348	329	287	242	192	149

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	304	290	260	223	188	168	161
Final energy use - Residential (PJ)	126	122	118	106	90.4	79.2	72.3
Final energy use - Commercial (PJ)	103	103	101	94.8	87.6	82.5	80.3
Final energy use - Industry (PJ)	86.5	89.3	90.2	96.9	111	116	122

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.72	1.81	3.2	3.44	3.67	3.91
Cumulative 5-yr (billion \$2018)							

Table 6: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	48.6	240	431	1,101	1,770	2,306	2,841
Vehicle stocks - LDV – All others (1000	2,369	2,255	2,142	1,561	980	554	129
units)							
Light-duty vehicle capital costs vs. REF -		449	1,171	1,866	2,839	3,076	2,940
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.174		0.748		3.07		4.93
units)							
Public EV charging plugs - L2 (1000 units)	1.07		18		73.9		119

Table 7: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	3.03	9.9	34.8	79.5	87.6	88.4	88.2
Heat Pump (%)							
Sales of space heating units - Electric	3.81	7.35	5.69	2.51	1.97	1.95	1.97
Resistance (%)							
Sales of space heating units - Gas (%)	89.6	73.5	50.6	9.98	2.86	2.43	2.43
Sales of space heating units - Fossil (%)	3.57	9.24	8.91	8.06	7.57	7.25	7.38
Sales of water heating units - Electric	0	1.51	15.7	41.6	46.2	46.5	46.5
Heat Pump (%)							
Sales of water heating units - Electric	7.01	15.7	26.3	48.5	52.5	52.7	52.7
Resistance (%)							
Sales of water heating units - Gas Furnace	92.3	82	57.3	9.09	0.535	0	0
(%)							
Sales of water heating units - Other (%)	0.642	0.79	0.79	0.787	0.779	0.778	0.778
Sales of cooking units - Electric	37.1	50.5	91.5	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	62.9	49.5	8.47	0.426	0	0	0
Residential HVAC investment in 2020s vs.		2.76	3.21				
REF - Cumulative 5-yr (billion \$2018)							

Table 8: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.749	8.98	33.5	81.9	90.4	91	91
Heat Pump (%)							
Sales of space heating units - Electric	0.855	3.41	4.83	7.94	8.5	8.54	8.55
Resistance (%)							
Sales of space heating units - Gas (%)	98.4	87.4	61.6	10.2	1.06	0.491	0.49
Sales of space heating units - Fossil (%)	0	0.208	0.04	0.002	0	0	0
Sales of water heating units - Electric	0.008	1.61	16.7	45	50	50.3	50.3
Heat Pump (%)							
Sales of water heating units - Electric	0.41	2.69	16.3	44.1	49	49.3	49.3
Resistance (%)							
Sales of water heating units - Gas (%)	99.5	95.3	66.6	10.6	0.622	0	0
Sales of water heating units - Other (%)	0.1	0.381	0.381	0.382	0.381	0.381	0.381
Sales of cooking units - Electric	41.9	54.6	83	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Commercial HVAC investment in 2020s -		7,533	8,381				
Cumulative 5-yr (million \$2018)							

Table 9: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	4,894	3,250	0	0	0	0	0
Installed thermal - Natural gas (MW)	2,926	2,933	3,732	4,265	3,603	3,581	4,890
Installed thermal - Nuclear (MW)	0	0	0	0	0	0	0
Installed renewables - Rooftop PV (MW)	540	833	1,113	1,450	1,851	2,318	2,871
Installed renewables - Solar - Base land use assumptions (MW)	768	768	768	768	768	768	1,335
Installed renewables - Wind - Base land use assumptions (MW)	547	717	6,391	10,963	12,838	13,762	16,825
Installed renewables - Solar - Constrained land use assumptions (MW)	767	767	767	767	7,665	8,703	9,779
Installed renewables - Wind - Constrained land use assumptions (MW)	1,234	1,969	7,960	12,142	13,037	13,410	15,929
Capital invested - Solar PV - Base (billion \$2018)		0	0	0	0	0	0.525
Capital invested - Wind - Base (billion \$2018)		0.251	7.55	5.67	2.22	1.04	3.24

Table 9: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Constrained (billion \$2018)		1.09	0	0	2.18	2.6	1.2
Capital invested - Wind - Constrained (billion \$2018)		0.199	7.9	6.7	0.918	0.419	2.7
Capital invested - Biomass power plant (billion \$2018)	0	0.003	0.029	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0.377

Table 10: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	2,042	2,042	2,042	2,042	2,042	2,042	3,288
Wind - Base land use assumptions (GWh)	1,617	2,124	18,149	30,651	35,589	38,005	46,263
OffshoreWind - Base land use	0	0	0	0	0	0	0
assumptions (GWh)							
Solar - Constrained land use assumptions	2,037	2,037	2,037	2,037	17,645	20,004	22,417
(GWh)							
Wind - Constrained land use assumptions	3,563	5,645	21,170	30,795	32,849	33,673	39,164
(GWh)							
OffshoreWind - Constrained land use	0	0	0	0	0	0	0
assumptions (GWh)							
Biomass power plant (GWh)	0	4.9	61.8	61.8	61.8	61.8	61.8
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	423
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0

Table 11: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Number of facilities - Power (quantity)	0	1	1	1	1	1	1
Number of facilities - Power ccu	0	0	0	0	0	0	1
(quantity)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	1	1	1	1
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis (quantity)	0	0	0	1	1	1	1
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	1	1	1	1	1	1
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0
Conversion capital investment -		2.83	32.3	18.6	2.91	0.542	346
Cumulative 5-yr (million \$2018)							
Biomass purchases (million \$2018/y)		0.333	3.78	4.99	5.18	5.22	26.6

Table 12: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	0	0	0	0.4
Annual - BECCS (MMT)		0	0	0	0	0	0.4
Annual - NGCC (MMT)		0	0	0	0	0	0
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - All (MMT)		0	0	0	0	0	0.4
Cumulative - BECCS (MMT)		0	0	0	0	0	0.4
Cumulative - NGCC (MMT)		0	0	0	0	0	0
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0

Table 13: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
Trunk (km)		0	0	0	0	0	0
Spur (km)		0	0	0	0	0	22.6
All (km)		0	0	0	0	0	22.6
Cumulative investment - Trunk (million \$2018)		0	0	0	0	0	0
Cumulative investment - Spur (million \$2018)		0	0	0	0	0	13.5
Cumulative investment - All (million \$2018)		0	0	0	0	0	13.5

Table 14: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
Annual (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 15: E+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate							-707
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-140
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-2,919
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-5.38
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-9.92
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-116
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest							-1,189
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-101
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,568
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-6,755
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,060
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-489
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-5,260
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-7.89
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-19.8
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-224
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,783
cropland (1000 tCO2e/y)							.,. 00

Table 15: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Reforest							-715
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-3,109
productivity (1000 tC02e/y)							
Carbon sink potential - Mid - All (not							-12,667
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Accelerate							-1,412
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-838
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-7,600
rotation length (1000 tC02e/y)							
Carbon sink potential - High - Improve							-10.6
plantations (1000 tC02e/y)							
Carbon sink potential - High - Increase							-29.8
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-332
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-2,378
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-1,329
pasture (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-18,580
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-4,651
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							116
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							106
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,485
Low - Extend rotation length (1000							.,
hectares)							
Land impacted for carbon sink potential -							1.95
Low - Improve plantations (1000							11.70
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							16.6
Low - Increase trees outside forests							10.0
(1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							10.0
Land impacted for carbon sink potential -	+						6.55
Low - Reforest pasture (1000 hectares)							6.33
							933
Land impacted for carbon sink potential -							933
Low - Restore productivity (1000							
hectares)							0.7/.0
Land impacted for carbon sink potential -							2,743
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							173
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							110
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							

Table 15: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							2,680
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							2.93
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							24.1
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							47.3
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,879
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,034
Mid - Total impacted (over 30 years) (1000							
hectares)							
Land impacted for carbon sink potential -							231
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							113
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,876
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							3.9
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							31.5
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							37.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,542
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,992
High - Total impacted (over 30 years)							•
(1000 hectares)							

Table 16: E+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-184
deployment - Cropland measures (1000							
tCO2e/y)							

Table 16: E+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Table 10. L+ Scenario - PILLAN O. Lana Sink		•	-				
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-7.84
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-192
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-360
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-15.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-376
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							329
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							12.1
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							341
deployment - Total (1000 hectares)							0-11
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							U
energy grasses (1000 hectares)							
Land impacted for carbon sink -							646
Aggressive deployment - Cropland							040
measures (1000 hectares)							
Land impacted for carbon sink -							24.1
							24.1
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							/70
Land impacted for carbon sink -							670
Aggressive deployment - Total (1000							
hectares)							
Table 17: E- scenario - IMPACTS - Health							
Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		17.8	0.021	0.021	0.018	0.012	0
Fuel Comb - Electric Generation - Coal							
(deaths)							
Premature deaths from air pollution -		4.79	2.42	1.68	0.983	0.467	0.563
Fuel Comb - Electric Generation - Natural							
Gas (deaths)							
Premature deaths from air pollution -		85.1	89.6	90.6	84.5	69.4	49.1
Mobile - On-Road (deaths)							
Premature deaths from air pollution - Gas		4.01	4.21	4.23	3.95	3.28	2.4
Stations (deaths)				20	0.70	0.20	
Premature deaths from air pollution -		16.7	16.8	16.6	15.4	12.8	9.15
Fuel Comb - Residential - Natural Gas		10.1	10.0	10.0	13.4	12.0	7.10
(deaths)							
Premature deaths from air pollution -		0.078	0.076	0.071	0.063	0.054	0.045
·		0.078	0.076	0.071	0.063	0.054	0.045
Fuel Comb - Residential - Oil (deaths)		0.701	0.770	0.744	0.700	0.744	0 / 0
Premature deaths from air pollution -		0.631	0.673	0.711	0.702	0.611	0.48
Fuel Comb - Residential - Other (deaths)							

Table 17: E- scenario - IMPACTS - Health (continued)

Table 11. E- Scellul 10 - IMPAGI 3 - Heultil (C	•						
Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		0.053	0.053	0.052	0.051	0.05	0.048
Fuel Comb - Comm/Institutional - Coal							
(deaths)							
Premature deaths from air pollution -		5.21	5.24	5.16	4.79	4.06	3.09
Fuel Comb - Comm/Institutional - Natural							
Gas (deaths)							
Premature deaths from air pollution -		0.423	0.377	0.337	0.299	0.261	0.224
Fuel Comb - Comm/Institutional - Oil							
(deaths)							
Premature deaths from air pollution -		0.842	0.787	0.727	0.66	0.588	0.516
Fuel Comb - Comm/Institutional - Other							
(deaths)		2.1=2		2.22			
Premature deaths from air pollution -		0.178	0.026	0.026	0.025	0.021	0.014
Industrial Processes - Coal Mining							
(deaths)							
Premature deaths from air pollution -		21.4	19.9	17.7	15.9	14.3	10.3
Industrial Processes - Oil & Gas							
Production (deaths)							
Monetary damages from air pollution -		158	0.183	0.183	0.163	0.107	0
Fuel Comb - Electric Generation - Coal							
(million \$2019)				11.0			
Monetary damages from air pollution -		42.5	21.4	14.9	8.71	4.13	4.99
Fuel Comb - Electric Generation - Natural							
Gas (million \$2019)		757	70.	001	754	(47	
Monetary damages from air pollution -		757	796	806	751	617	436
Mobile - On-Road (million \$2019)			07.0	07.5	01.0		04.0
Monetary damages from air pollution -		35.5	37.3	37.5	34.9	29	21.3
Gas Stations (million \$2019)		1/ 0	1/0	1/7	107	110	01.1
Monetary damages from air pollution -		148	149	147	137	113	81.1
Fuel Comb - Residential - Natural Gas							
(million \$2019)		0.701	0 (7)	0.400	0.555	0.40	0.400
Monetary damages from air pollution -		0.691	0.676	0.629	0.555	0.48	0.402
Fuel Comb - Residential - Oil (million \$2019)							
		F F0	5.96	()	4.00	Г / 1	4.25
Monetary damages from air pollution -		5.59	5.96	6.3	6.22	5.41	4.25
Fuel Comb - Residential - Other (million \$2019)							
Monetary damages from air pollution -		0.473	0.47	0.463	0.453	0.439	0.422
Fuel Comb - Comm/Institutional - Coal		0.473	0.47	0.463	0.453	0.439	0.422
(million \$2019)							
Monetary damages from air pollution -		46.1	46.4	45.6	42.4	35.9	27.4
Fuel Comb - Comm/Institutional - Natural		46.1	46.4	45.6	42.4	35.9	21.4
Gas (million \$2019)							
Monetary damages from air pollution -		3.75	3.34	2.99	2.64	2.31	1.98
Fuel Comb - Comm/Institutional - Oil		3.13	3.34	2.77	2.04	2.31	1.70
(million \$2019)							
Monetary damages from air pollution -		7.46	6.96	6.43	5.84	5.21	4.56
Fuel Comb - Comm/Institutional - Other		1.40	0.90	0.43	5.64	5.21	4.50
(million \$2019)							
Monetary damages from air pollution -		1.57	0.228	0.228	0.219	0.186	0.128
Industrial Processes - Coal Mining		1.51	0.220	0.220	0.217	0.100	0.120
(million \$2019)			[
Monetary damages from air pollution -		190	177	157	141	127	91
i ionotar y damagoo n om an ponduon		170	111	101	171	141	71
Industrial Processes - Oil & Gas			ļ				

Table 18: E- scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		5.12	22.7	13.9	11.1	7.08	17.3
By economic sector - Construction (jobs)		4,754	6,706	5,981	5,730	6,203	7,759

Table 18: E- scenario - IMPACTS - Jobs (continued)

Table 18: E- Scellullo - IMPAG13 - Jobs (Colli	шиеиј						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Manufacturing		3,824	5,086	4,694	4,383	4,625	4,495
(jobs)							
By economic sector - Mining (jobs)		4,894	3,412	2,565	1,927	1,446	889
By economic sector - Other (jobs)		470	639	653	716	845	1,474
By economic sector - Pipeline (jobs)		402	348	299	261	225	166
By economic sector - Professional (jobs)		2,731	3,442	3,076	3,073	3,453	4,526
By economic sector - Trade (jobs)		2,766	2,764	2,491	2,387	2,517	3,149
By economic sector - Utilities (jobs)		3,880	6,933	5,327	4,760	5,292	5,618
By resource sector - Biomass (jobs)		19.4	61.1	46.1	46.7	30.1	71.2
By resource sector - CO2 (jobs)		0	0	0	0	0	50.5
By resource sector - Coal (jobs)		2,642	1,041	532	464	414	360
By resource sector - Grid (jobs)		4,635	12,021	9,474	8,253	9,314	10,134
By resource sector - Natural Gas (jobs)		4,844	3,805	2,742	2,284	2,007	1,473
By resource sector - Nuclear (jobs)		0	0	0	0	0	0
By resource sector - Oil (jobs)		6,829	6,068	5,411	4,704	3,990	2,535
By resource sector - Solar (jobs)		3,442	3,449	3,837	4,134	4,720	8,131
By resource sector - Wind (jobs)		1,316	2,909	3,058	3,364	4,140	5,339
By education level - All sectors - High		9,933	12,340	10,601	9,805	10,355	11,758
school diploma or less (jobs)		,,,,,,		,	1,222	,	,
By education level - All sectors -		7,157	9,141	7,800	7,256	7,759	8,968
Associates degree or some college (jobs)		1,101	,,,,,	1,222	,,	1,101	7,
By education level - All sectors -		5,222	6,191	5,269	4,858	5,091	5,728
Bachelors degree (jobs)		-,	,,,,,	7,20	,,,,,	7,511	-7
By education level - All sectors - Masters		1,239	1,481	1,257	1,166	1,233	1,425
or professional degree (jobs)		,,	,,,,,,,	,,=0	,,,,,	,,	.,
By education level - All sectors - Doctoral		175	200	174	165	176	215
degree (jobs)							
Related work experience - All sectors -		3,334	4,198	3,585	3,324	3,529	4,048
None (jobs)		,,,,,	,,,,,	5,555	,,,,	5,521	1,2 12
Related work experience - All sectors - Up		4,638	5,736	4,952	4,604	4,884	5,644
to 1 year (jobs)		,	.,	, -	,	,	-,-
Related work experience - All sectors - 1		8,739	10,701	9,134	8,448	8,921	10,130
to 4 years (jobs)		-, -	-, -	, -	-,	-,	-,
Related work experience - All sectors - 4		5,511	6,859	5,843	5,413	5,739	6,543
to 10 years (jobs)		-,-		.,.	-,	, -	.,.
Related work experience - All sectors -		1,505	1,860	1,585	1,461	1,542	1,729
Over 10 years (jobs)		,	,	,	, -	,-	•
On-the-Job Training - All sectors - None		1,304	1,563	1,344	1,248	1,316	1,529
(jobs)			.	-	-		
On-the-Job Training - All sectors - Up to 1		15,923	19,471	16,679	15,431	16,288	18,469
year (jobs)		,	<i>,</i>	, -	-, -	-,	-,
On-the-Job Training - All sectors - 1 to 4		4,843	6,159	5,238	4,855	5,169	5,928
years (jobs)			,				,
On-the-Job Training - All sectors - 4 to 10		1,431	1,884	1,597	1,492	1,605	1,897
years (jobs)		, -	,	,-	,	,	,-
On-the-Job Training - All sectors - Over 10		226	277	241	224	237	271
years (jobs)							
On-Site or In-Plant Training - All sectors -		3,774	4,655	3,995	3,717	3,946	4,566
None (jobs)		-,	,	,	-,	,	,
On-Site or In-Plant Training - All sectors -		14,464	17,701	15,151	14,009	14,786	16,760
Up to 1 year (jobs)			.	,	,	.	•
On-Site or In-Plant Training - All sectors -		3,793	4,798	4,089	3,788	4,025	4,603
1 to 4 years (jobs)		,,,,,	,,,,,	,,,,,	7,	1,525	.,
On-Site or In-Plant Training - All sectors -		1,513	1,952	1,655	1,541	1,647	1,920
4 to 10 years (jobs)		.,0.0	.,, 52	.,000	.,	.,	.,. = 0
On-Site or In-Plant Training - All sectors -		183	247	210	196	212	245
Over 10 years (jobs)		.55			.,,	-:-	
Wage income - All (million \$2019)		1,284	1,594	1,368	1,276	1,361	1,553
		1,204	1,074	.,000	1,210	.,001	.,000

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	304	292	270	253	241	225	207
Final energy use - Residential (PJ)	126	122	121	118	114	105	94.6
Final energy use - Commercial (PJ)	103	103	103	102	99.5	96.4	92.8
Final energy use - Industry (PJ)	86.5	89.4	90.4	97.9	112	117	124

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.43	1.48	1.97	2.07	2.75	2.92
Cumulative 5-yr (billion \$2018)							

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	37.7	93.7	150	410	669	1,244	1,819
Vehicle stocks - LDV – All others (1000 units)	2,378	2,378	2,378	2,256	2,134	1,644	1,155
Light-duty vehicle capital costs vs. REF - Cumulative 5-yr (million \$2018)		0	76.1	152	522	1,618	2,366
Public EV charging plugs - DC Fast (1000 units)	0.174		0.26		1.16		3.16
Public EV charging plugs - L2 (1000 units)	1.07		6.25		27.9		75.9

Table 22: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

2020	2025	2030	2035	2040	2045	2050
3.03	8.14	10.8	19.7	39.7	63.6	77.1
3.81	7.45	7.24	6.69	5.41	3.74	2.75
89.6	75.1	72.6	64.6	46.5	25	12.6
3.57	9.27	9.34	9.11	8.39	7.66	7.61
0	0.562	2.11	7.14	18.6	32.3	40.2
7.01	15.2	16.4	20.2	29.3	40.6	47.3
92.3	83.4	80.7	71.9	51.3	26.3	11.8
0.642	0.79	0.789	0.787	0.783	0.781	0.778
36.9	38.5	44.3	59.5	80.7	93.8	98.3
63.1	61.5	55.7	40.5	19.3	6.23	1.68
	2.75	3.16				
	3.03 3.81 89.6 3.57 0 7.01 92.3 0.642 36.9	3.03 8.14 3.81 7.45 89.6 75.1 3.57 9.27 0 0.562 7.01 15.2 92.3 83.4 0.642 0.79 36.9 38.5 63.1 61.5	3.03 8.14 10.8 3.81 7.45 7.24 89.6 75.1 72.6 3.57 9.27 9.34 0 0.562 2.11 7.01 15.2 16.4 92.3 83.4 80.7 0.642 0.79 0.789 36.9 38.5 44.3 63.1 61.5 55.7	3.03 8.14 10.8 19.7 3.81 7.45 7.24 6.69 89.6 75.1 72.6 64.6 3.57 9.27 9.34 9.11 0 0.562 2.11 7.14 7.01 15.2 16.4 20.2 92.3 83.4 80.7 71.9 0.642 0.79 0.789 0.787 36.9 38.5 44.3 59.5 63.1 61.5 55.7 40.5	3.03 8.14 10.8 19.7 39.7 3.81 7.45 7.24 6.69 5.41 89.6 75.1 72.6 64.6 46.5 3.57 9.27 9.34 9.11 8.39 0 0.562 2.11 7.14 18.6 7.01 15.2 16.4 20.2 29.3 92.3 83.4 80.7 71.9 51.3 0.642 0.79 0.789 0.787 0.783 36.9 38.5 44.3 59.5 80.7 63.1 61.5 55.7 40.5 19.3	3.03 8.14 10.8 19.7 39.7 63.6 3.81 7.45 7.24 6.69 5.41 3.74 89.6 75.1 72.6 64.6 46.5 25 3.57 9.27 9.34 9.11 8.39 7.66 0 0.562 2.11 7.14 18.6 32.3 7.01 15.2 16.4 20.2 29.3 40.6 92.3 83.4 80.7 71.9 51.3 26.3 0.642 0.79 0.789 0.787 0.783 0.781 36.9 38.5 44.3 59.5 80.7 93.8 63.1 61.5 55.7 40.5 19.3 6.23

Table 23: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.749	7.59	10.3	19	39.5	64.5	79
Heat Pump (%)							
Sales of space heating units - Electric	0.855	3.35	3.5	4.01	5.26	6.85	7.79
Resistance (%)							
Sales of space heating units - Gas (%)	98.4	88.8	86	76.8	55.2	28.6	13.2
Sales of space heating units - Fossil (%)	0	0.241	0.225	0.172	0.092	0.04	0.021
Sales of water heating units - Electric	0.008	0.63	2.29	7.68	20	34.8	43.4
Heat Pump (%)							
Sales of water heating units - Electric	0.41	2	3.48	8.38	19.9	34.2	42.5
Resistance (%)							
Sales of water heating units - Gas (%)	99.5	97	93.8	83.6	59.7	30.6	13.7
Sales of water heating units - Other (%)	0.1	0.381	0.381	0.382	0.381	0.381	0.381

Table 23: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of cooking units - Electric	41.9	46.2	50.2	60.8	75.4	84.6	87.8
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	53.8	49.8	39.2	24.6	15.4	12.2
Commercial HVAC investment in 2020s -		7,532	8,365				
Cumulative 5-yr (million \$2018)							

Table 24: E- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	4,894	3,250	0	0	0	0	0
Installed thermal - Natural gas (MW)	2,926	2,930	3,451	3,446	3,032	2,376	3,645
Installed thermal - Nuclear (MW)	0	0	0	0	0	0	0

Table 25: E- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate regeneration (1000 tC02e/y)							-707
Carbon sink potential - Low - Avoid deforestation (1000 tC02e/y)							-140
Carbon sink potential - Low - Extend rotation length (1000 tC02e/y)							-2,919
Carbon sink potential - Low - Improve plantations (1000 tC02e/y)							-5.38
Carbon sink potential - Low - Increase retention of HWP (1000 tC02e/y)							-9.92
Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)							-116
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							-1,189
Carbon sink potential - Low - Reforest pasture (1000 tC02e/y)							-101
Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)							-1,568
Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)							-6,755
Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)							-1,060
Carbon sink potential - Mid - Avoid deforestation (1000 tCO2e/y)							-489
Carbon sink potential - Mid - Extend rotation length (1000 tCO2e/y)							-5,260
Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)							-7.89
Carbon sink potential - Mid - Increase retention of HWP (1000 tC02e/y)							-19.8
Carbon sink potential - Mid - Increase trees outside forests (1000 tC02e/y)							-224
Carbon sink potential - Mid - Reforest							-1,783
cropland (1000 tC02e/y) Carbon sink potential - Mid - Reforest							-715
pasture (1000 tC02e/y) Carbon sink potential - Mid - Restore							-3,109
productivity (1000 tCO2e/y) Carbon sink potential - Mid - All (not							-12,667
counting overlap) (1000 tCO2e/y) Carbon sink potential - High - Accelerate							-1,412
regeneration (1000 tCO2e/y) Carbon sink potential - High - Avoid							-838
deforestation (1000 tCO2e/y)							

Table 25: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Extend							-7,600
rotation length (1000 tC02e/y)							10 (
Carbon sink potential - High - Improve							-10.6
plantations (1000 tC02e/y)							00.0
Carbon sink potential - High - Increase							-29.8
retention of HWP (1000 tC02e/y)							000
Carbon sink potential - High - Increase							-332
trees outside forests (1000 tC02e/y) Carbon sink potential - High - Reforest							-2,378
cropland (1000 tCO2e/y)							-2,310
Carbon sink potential - High - Reforest							-1,329
pasture (1000 tCO2e/y)							-1,327
Carbon sink potential - High - All (not							-18,580
counting overlap) (1000 tC02e/y)							-10,500
Carbon sink potential - High - Restore							-4,651
productivity (1000 tCO2e/y)							-4,001
Land impacted for carbon sink potential -							116
Low - Accelerate regeneration (1000							110
hectares)							
Land impacted for carbon sink potential -							106
Low - Avoid deforestation (over 30 years)							100
(1000 hectares)							
Land impacted for carbon sink potential -							1,485
Low - Extend rotation length (1000							1,400
hectares)							
Land impacted for carbon sink potential -							1.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							16.6
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							6.55
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							933
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,743
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							173
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							110
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							0.400
Land impacted for carbon sink potential -							2,680
Mid - Extend rotation length (1000							
hectares)							0.00
Land impacted for carbon sink potential -							2.93
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							07.5
Land impacted for carbon sink potential -							24.1
Mid - Increase trees outside forests (1000					1		

Table 25: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							47.3
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,879
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,034
Mid - Total impacted (over 30 years) (1000							
hectares)							
Land impacted for carbon sink potential -							231
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							113
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,876
High - Extend rotation length (1000							-,-
hectares							
Land impacted for carbon sink potential -							3.9
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							_
hectares)							
Land impacted for carbon sink potential -							31.5
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							37.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,542
High - Restore productivity (1000							.,
hectares)							
Land impacted for carbon sink potential -							5,992
High - Total impacted (over 30 years)							3,772
(1000 hectares)							
(1000 Hootal co)							

Table 26: E- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-184
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-7.84
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-192
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-360
deployment - Cropland measures (1000							
tCO2e/y)							

Table 26: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-15.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-376
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							329
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							12.1
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							341
deployment - Total (1000 hectares)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							646
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							24.1
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							670
Aggressive deployment - Total (1000							
hectares)							

Table 27: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Fuel Comb - Electric Generation - Coal (deaths)		17.8	0.021	0.021	0.018	0.012	0
Premature deaths from air pollution - Fuel Comb - Electric Generation - Natural Gas (deaths)		4.2	2.57	1.46	1.08	0.496	0.392
Premature deaths from air pollution - Mobile - On-Road (deaths)		83.8	81.5	64.3	38.3	18	7.23
Premature deaths from air pollution - Gas Stations (deaths)		3.94	3.78	3	1.9	1.04	0.599
Premature deaths from air pollution - Fuel Comb - Residential - Natural Gas (deaths)		16.6	15.9	12.3	7.43	3.73	1.49
Premature deaths from air pollution - Fuel Comb - Residential - Oil (deaths)		0.075	0.068	0.054	0.039	0.028	0.019
Premature deaths from air pollution - Fuel Comb - Residential - Other (deaths)		0.626	0.623	0.533	0.39	0.241	0.134
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Coal (deaths)		0.053	0.053	0.052	0.051	0.05	0.048
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (deaths)		5.19	4.84	3.82	2.47	1.34	0.6
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths)		0.423	0.351	0.286	0.224	0.165	0.11
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths)		0.842	0.734	0.62	0.499	0.376	0.253

Table 27: E+RE+ scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Industrial Processes - Coal Mining (deaths)		0.216	0.025	0.024	0.022	0.021	0.007
Premature deaths from air pollution - Industrial Processes - Oil & Gas Production (deaths)		21	20.4	18	13.3	8.3	1.25
Monetary damages from air pollution - Fuel Comb - Electric Generation - Coal (million \$2019)		158	0.183	0.183	0.163	0.107	0
Monetary damages from air pollution - Fuel Comb - Electric Generation - Natural Gas (million \$2019)		37.2	22.7	13	9.6	4.4	3.47
Monetary damages from air pollution - Mobile - On-Road (million \$2019)		745	724	572	341	160	64.3
Monetary damages from air pollution - Gas Stations (million \$2019)		34.9	33.5	26.6	16.8	9.17	5.31
Monetary damages from air pollution - Fuel Comb - Residential - Natural Gas (million \$2019)		147	141	109	65.8	33.1	13.2
Monetary damages from air pollution - Fuel Comb - Residential - Oil (million \$2019)		0.668	0.6	0.479	0.347	0.244	0.165
Monetary damages from air pollution - Fuel Comb - Residential - Other (million \$2019)		5.55	5.52	4.73	3.46	2.13	1.19
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Coal (million \$2019)		0.473	0.47	0.463	0.453	0.439	0.422
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (million \$2019)		46	42.9	33.8	21.9	11.9	5.31
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Oil (million \$2019)		3.75	3.11	2.54	1.98	1.46	0.971
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Other (million \$2019)		7.46	6.49	5.48	4.42	3.33	2.24
Monetary damages from air pollution - Industrial Processes - Coal Mining (million \$2019)		1.9	0.225	0.212	0.191	0.181	0.063
Monetary damages from air pollution - Industrial Processes - Oil & Gas Production (million \$2019)		187	181	160	118	73.7	11.1

Table 28: E+RE+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		4.23	8.78	8.83	6.88	5.07	17.1
By economic sector - Construction (jobs)		4,929	5,915	6,605	6,774	6,759	14,336
By economic sector - Manufacturing		4,238	5,146	6,118	5,949	5,218	8,750
(jobs)							
By economic sector - Mining (jobs)		4,959	3,408	2,454	1,521	857	256
By economic sector - Other (jobs)		485	587	715	829	948	2,836
By economic sector - Pipeline (jobs)		393	346	272	186	110	30.2
By economic sector - Professional (jobs)		2,861	3,163	3,436	3,670	3,948	7,682
By economic sector - Trade (jobs)		2,883	2,595	2,601	2,522	2,538	5,007
By economic sector - Utilities (jobs)		4,231	5,617	6,228	6,355	6,153	11,893
By resource sector - Biomass (jobs)		16.5	24.8	23.8	22.5	18.8	75.5
By resource sector - CO2 (jobs)		0	0	0	0	0	0
By resource sector - Coal (jobs)		3,022	1,182	528	459	414	351
By resource sector - Grid (jobs)		5,281	8,968	11,313	11,693	11,230	23,448

Table 28: E+RE+ scenario - IMPACTS - Jobs (continued)

14510 2012 112 000114110 11 11 11010 000	o (oomemaa	· ~ j					
Item	2020	2025	2030	2035	2040	2045	2050
By resource sector - Natural Gas (jobs)		4,700	3,973	2,796	2,051	1,495	742
By resource sector - Nuclear (jobs)		0	0	0	0	0	0
By resource sector - Oil (jobs)		6,802	5,905	4,898	3,260	1,961	335
By resource sector - Solar (jobs)		3,646	3,710	4,241	4,813	5,245	15,801
By resource sector - Wind (jobs)		1,515	3,023	4,637	5,515	6,175	10,056
By education level - All sectors - High		10,491	11,223	12,019	11,742	11,123	21,462
school diploma or less (jobs)							
By education level - All sectors -		7,558	8,299	8,913	8,827	8,501	16,510
Associates degree or some college (jobs)							
By education level - All sectors -		5,460	5,717	5,912	5,690	5,402	9,999
Bachelors degree (jobs)							
By education level - All sectors - Masters		1,292	1,360	1,403	1,366	1,323	2,482
or professional degree (jobs)							
By education level - All sectors - Doctoral		181	187	191	189	189	357
degree (jobs)		0.510	0.011	/ 050	0.000	0.005	70//
Related work experience - All sectors -		3,510	3,811	4,059	3,982	3,805	7,366
None (jobs)		4.004	F 0/1	F / / 1	E EE1	F 000	10.000
Related work experience - All sectors - Up		4,904	5,241	5,641	5,551	5,308	10,339
to 1 year (jobs) Related work experience - All sectors - 1		9,193	9,770	10,310	10,042	9,561	18,176
to 4 years (jobs)		9,193	9,770	10,310	10,042	9,561	18,176
Related work experience - All sectors - 4		5,793	6,256	6,619	6,480	6,200	11,802
to 10 years (jobs)		5,195	6,256	0,019	0,400	6,200	11,002
Related work experience - All sectors -		1,583	1,708	1,809	1,759	1,665	3,126
Over 10 years (jobs)		1,505	1,100	1,007	1,107	1,000	0,120
On-the-Job Training - All sectors - None		1,366	1,438	1,510	1,471	1,408	2,734
(jobs)		1,000	1,400	1,010	1,-11	1,400	2,104
On-the-Job Training - All sectors - Up to 1		16,780	17,832	18,908	18,419	17,494	33,254
year (jobs)		.5,.55	,552	.57.55	,	,	00,20
On-the-Job Training - All sectors - 1 to 4		5,099	5,580	5,951	5,861	5,623	10,849
years (jobs)		-,-	-,		,	-,	-,-
On-the-Job Training - All sectors - 4 to 10		1,500	1,678	1,792	1,793	1,756	3,480
years (jobs)							
On-the-Job Training - All sectors - Over 10		237	258	277	271	257	492
years (jobs)							
On-Site or In-Plant Training - All sectors -		3,969	4,273	4,541	4,461	4,285	8,257
None (jobs)							
On-Site or In-Plant Training - All sectors -		15,243	16,190	17,164	16,717	15,875	30,210
Up to 1 year (jobs)							
On-Site or In-Plant Training - All sectors -		3,995	4,352	4,642	4,561	4,363	8,408
1 to 4 years (jobs)							
On-Site or In-Plant Training - All sectors -		1,583	1,749	1,852	1,835	1,782	3,480
4 to 10 years (jobs)							
On-Site or In-Plant Training - All sectors -		193	221	240	240	233	454
Over 10 years (jobs)							
Wage income - All (million \$2019)		1,348	1,452	1,540	1,512	1,453	2,774

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	304	290	260	223	188	168	161
Final energy use - Residential (PJ)	126	122	118	106	90.4	79.2	72.3
Final energy use - Commercial (PJ)	103	103	101	94.8	87.6	82.5	80.3
Final energy use - Industry (PJ)	86.5	89.3	90.2	96.9	111	116	122

Table 30: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.72	1.81	3.2	3.44	3.67	3.91
Cumulative 5-yr (billion \$2018)							

Table 31: <i>E+RE+ scenario -</i>	PILLAR 1: Efficiency	/Electrification -	Transportation
-----------------------------------	----------------------	--------------------	----------------

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	48.6	240	431	1,101	1,770	2,306	2,841
Vehicle stocks - LDV – All others (1000	2,369	2,255	2,142	1,561	980	554	129
units)							
Light-duty vehicle capital costs vs. REF -		449	1,171	1,866	2,839	3,076	2,940
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.174		0.748		3.07		4.93
units)							
Public EV charging plugs - L2 (1000 units)	1.07		18		73.9		119

Table 32: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	3.03	9.9	34.8	79.5	87.6	88.4	88.2
Heat Pump (%)							
Sales of space heating units - Electric	3.81	7.35	5.69	2.51	1.97	1.95	1.97
Resistance (%)							
Sales of space heating units - Gas (%)	89.6	73.5	50.6	9.98	2.86	2.43	2.43
Sales of space heating units - Fossil (%)	3.57	9.24	8.91	8.06	7.57	7.25	7.38
Sales of water heating units - Electric	0	1.51	15.7	41.6	46.2	46.5	46.5
Heat Pump (%)							
Sales of water heating units - Electric	7.01	15.7	26.3	48.5	52.5	52.7	52.7
Resistance (%)							
Sales of water heating units - Gas Furnace	92.3	82	57.3	9.09	0.535	0	0
(%)							
Sales of water heating units - Other (%)	0.642	0.79	0.79	0.787	0.779	0.778	0.778
Sales of cooking units - Electric	37.1	50.5	91.5	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	62.9	49.5	8.47	0.426	0	0	0
Residential HVAC investment in 2020s vs.		2.76	3.21				
REF - Cumulative 5-yr (billion \$2018)							

Table 33: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.749	8.98	33.5	81.9	90.4	91	91
Heat Pump (%)							
Sales of space heating units - Electric	0.855	3.41	4.83	7.94	8.5	8.54	8.55
Resistance (%)							
Sales of space heating units - Gas (%)	98.4	87.4	61.6	10.2	1.06	0.491	0.49
Sales of space heating units - Fossil (%)	0	0.208	0.04	0.002	0	0	0
Sales of water heating units - Electric	0.008	1.61	16.7	45	50	50.3	50.3
Heat Pump (%)							
Sales of water heating units - Electric	0.41	2.69	16.3	44.1	49	49.3	49.3
Resistance (%)							
Sales of water heating units - Gas (%)	99.5	95.3	66.6	10.6	0.622	0	0
Sales of water heating units - Other (%)	0.1	0.381	0.381	0.382	0.381	0.381	0.381
Sales of cooking units - Electric	41.9	54.6	83	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Commercial HVAC investment in 2020s -		7,533	8,381				
Cumulative 5-yr (million \$2018)							

Table 34: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	4,894	4,316	0	0	0	0	0
Installed thermal - Natural gas (MW)	2,926	2,940	3,700	3,726	3,038	2,564	3,833

Table 34: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Nuclear (MW)	0	0	0	0	0	0	0
Installed renewables - Rooftop PV (MW)	540	833	1,113	1,450	1,851	2,318	2,871
Installed renewables - Solar - Base land	768	768	768	768	768	768	8,483
use assumptions (MW)							
Installed renewables - Wind - Base land	547	1,001	7,535	12,685	16,824	19,028	22,089
use assumptions (MW)							
Installed renewables - Solar -	769	769	769	5,567	7,586	9,769	17,297
Constrained land use assumptions (MW)							
Installed renewables - Wind - Constrained	1,291	2,730	9,634	13,133	15,301	16,157	18,496
land use assumptions (MW)							
Installed renewables - Offshore Wind -	0	0	0	0	0	0	0
Constrained land use assumptions (MW)							
Capital invested - Solar PV - Base (billion		0	0	0	0	0	7.15
\$2018)							
Capital invested - Wind - Base (billion		0.668	8.7	6.39	4.89	2.47	3.24
\$2018)							

Table 35: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	2,042	2,042	2,042	2,042	2,042	2,042	18,184
Wind - Base land use assumptions (GWh)	1,617	2,948	21,310	35,224	46,069	51,530	59,186
OffshoreWind - Base land use assumptions (GWh)	0	0	0	0	0	0	0
Solar - Constrained land use assumptions (GWh)	4,085	4,085	4,085	25,752	34,830	44,503	76,079
Wind - Constrained land use assumptions (GWh)	7,126	15,214	49,826	65,862	75,327	78,528	87,375
OffshoreWind - Constrained land use assumptions (GWh)	0	0	0	0	0	0	0

Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate							-707
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-140
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-2,919
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-5.38
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-9.92
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-116
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-1,189
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-101
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,568
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-6,755
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,060
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-489
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-5,260
rotation length (1000 tCO2e/y)							

Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item Conhon sink potential Mid Improve	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)							-7.89
Carbon sink potential - Mid - Increase							-19.8
retention of HWP (1000 tCO2e/y)							-17.0
Carbon sink potential - Mid - Increase							-224
trees outside forests (1000 tC02e/y)							-224
Carbon sink potential - Mid - Reforest							-1,783
cropland (1000 tCO2e/y)							-1,100
Carbon sink potential - Mid - Reforest							-715
pasture (1000 tC02e/y)							110
Carbon sink potential - Mid - Restore							-3,109
productivity (1000 tC02e/y)							0,107
Carbon sink potential - Mid - All (not							-12,667
counting overlap) (1000 tCO2e/y)							,
Carbon sink potential - High - Accelerate							-1,412
regeneration (1000 tCO2e/y)							.,
Carbon sink potential - High - Avoid							-838
deforestation (1000 tC02e/y)							
Carbon sink potential - High - Extend							-7,600
rotation length (1000 tC02e/y)							.,000
Carbon sink potential - High - Improve							-10.6
plantations (1000 tCO2e/y)							.0.0
Carbon sink potential - High - Increase							-29.8
retention of HWP (1000 tCO2e/y)							27.0
Carbon sink potential - High - Increase							-332
trees outside forests (1000 tC02e/y)							002
Carbon sink potential - High - Reforest							-2,378
cropland (1000 tCO2e/y)							_,0.0
Carbon sink potential - High - Reforest							-1,329
pasture (1000 tC02e/y)							.,
Carbon sink potential - High - All (not							-18,580
counting overlap) (1000 tCO2e/y)							,
Carbon sink potential - High - Restore							-4,651
productivity (1000 tCO2e/y)							,
Land impacted for carbon sink potential -							116
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							106
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,485
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							16.6
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							6.55
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							933
Low - Restore productivity (1000							
hectares)							

Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Table 36: E+RE+ scenario - PILLAR 6: Land Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -	2020	2020	2000	2000	2040	2040	2,743
Low - Total impacted (over 30 years)							2,140
(1000 hectares)							
Land impacted for carbon sink potential -						+	173
Mid - Accelerate regeneration (1000							113
hectares)							
							110
Land impacted for carbon sink potential -							110
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							0.400
Land impacted for carbon sink potential -							2,680
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							2.93
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							24.1
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							47.3
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,879
Mid - Restore productivity (1000							.,
hectares)							
Land impacted for carbon sink potential -							5,034
Mid - Total impacted (over 30 years) (1000							0,004
hectares)							
Land impacted for carbon sink potential -						+	231
High - Accelerate regeneration (1000							231
hectares) Land impacted for carbon sink potential -							113
·							113
High - Avoid deforestation (over 30 years)							
(1000 hectares)							0.07/
Land impacted for carbon sink potential -							3,876
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							3.9
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							31.5
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							37.8
High - Reforest pasture (1000 hectares)							01.0
Land impacted for carbon sink potential -						+	1,542
High - Restore productivity (1000							1,542
hectares)							F 000
Land impacted for carbon sink potential -							5,992
High - Total impacted (over 30 years)							
(1000 hectares)							

Table 37: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-184
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-7.84
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-192
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-360
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-15.7
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Aggressive							-376
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							329
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							12.1
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							341
deployment - Total (1000 hectares)							•
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							Ū
energy grasses (1000 hectares)							
Land impacted for carbon sink -							646
Aggressive deployment - Cropland							0-10
measures (1000 hectares)							
Land impacted for carbon sink -							24.1
Aggressive deployment - Permanent							∠4.1
conservation cover (1000 hectares)							
Land impacted for carbon sink -							670
Aggressive deployment - Total (1000							טוט
hectares)							

Table 38: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		17.8	0.021	0.021	0.018	0.012	0
Fuel Comb - Electric Generation - Coal (deaths)							
Premature deaths from air pollution -		4.69	3.19	2.81	3.24	2.4	0.758
Fuel Comb - Electric Generation - Natural		4.07	5.17	2.01	3.24	2.4	0.130
Gas (deaths)							
Premature deaths from air pollution -		83.8	81.5	64.3	38.3	18	7.23
Mobile - On-Road (deaths)							
Premature deaths from air pollution - Gas		3.94	3.78	3	1.9	1.04	0.599
Stations (deaths)							

Table 38: E+RE- scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Fuel Comb - Residential - Natural Gas		16.6	15.9	12.3	7.43	3.73	1.49
(deaths) Premature deaths from air pollution - Fuel Comb - Residential - Oil (deaths)		0.075	0.068	0.054	0.039	0.028	0.019
Premature deaths from air pollution - Fuel Comb - Residential - Other (deaths)		0.626	0.623	0.533	0.39	0.241	0.134
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Coal (deaths)		0.053	0.053	0.052	0.051	0.05	0.048
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (deaths)		5.19	4.84	3.82	2.47	1.34	0.6
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths)		0.423	0.351	0.286	0.224	0.165	0.11
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths)		0.842	0.734	0.62	0.499	0.376	0.253
Premature deaths from air pollution - Industrial Processes - Coal Mining (deaths)		0.161	0.025	0.024	0.022	0.021	0.007
Premature deaths from air pollution - Industrial Processes - Oil & Gas Production (deaths)		21.7	21.5	21.7	18.8	16	12.1
Monetary damages from air pollution - Fuel Comb - Electric Generation - Coal (million \$2019)		158	0.183	0.183	0.163	0.107	0
Monetary damages from air pollution - Fuel Comb - Electric Generation - Natural Gas (million \$2019)		41.6	28.3	24.9	28.7	21.3	6.72
Monetary damages from air pollution - Mobile - On-Road (million \$2019)		745	724	572	341	160	64.3
Monetary damages from air pollution - Gas Stations (million \$2019)		34.9	33.5	26.6	16.8	9.17	5.31
Monetary damages from air pollution - Fuel Comb - Residential - Natural Gas (million \$2019)		147	141	109	65.8	33.1	13.2
Monetary damages from air pollution - Fuel Comb - Residential - Oil (million \$2019)		0.668	0.6	0.479	0.347	0.244	0.165
Monetary damages from air pollution - Fuel Comb - Residential - Other (million \$2019)		5.55	5.52	4.73	3.46	2.13	1.19
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Coal (million \$2019)		0.473	0.47	0.463	0.453	0.439	0.422
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (million \$2019)		46	42.9	33.8	21.9	11.9	5.31
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Oil (million \$2019)		3.75	3.11	2.54	1.98	1.46	0.971
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Other (million \$2019)		7.46	6.49	5.48	4.42	3.33	2.24
Monetary damages from air pollution - Industrial Processes - Coal Mining (million \$2019)		1.42	0.223	0.213	0.193	0.184	0.062

Table 38: E+RE- scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		192	191	192	167	142	108
Industrial Processes - Oil & Gas							
Production (million \$2019)							

Table 39: E+RE- scenario - IMPACTS - Jobs

Table 39: E+RE- Scenario - IMPACIS - Jobs							
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		4.81	24.3	13.9	9.5	6.25	17.3
By economic sector - Construction (jobs)		6,154	6,789	7,149	7,840	7,038	6,871
By economic sector - Manufacturing		4,165	4,200	4,551	4,308	3,193	3,010
(jobs)							
By economic sector - Mining (jobs)		4,911	3,555	2,810	1,969	1,387	903
By economic sector - Other (jobs)		690	764	832	973	1,045	1,374
By economic sector - Pipeline (jobs)		409	372	345	289	233	187
By economic sector - Professional (jobs)		3,227	3,363	3,429	3,675	3,402	3,451
By economic sector - Trade (jobs)		3,059	2,781	2,718	2,701	2,492	2,562
By economic sector - Utilities (jobs)		4,885	6,161	6,798	8,134	6,777	5,354
By resource sector - Biomass (jobs)		16.8	62.4	47.5	35.5	24.5	72
By resource sector - CO2 (jobs)		0	0	0	0	0	57
By resource sector - Coal (jobs)		2,598	1,040	528	459	414	351
By resource sector - Grid (jobs)		6,654	9,922	11,799	14,331	11,520	9,275
By resource sector - Natural Gas (jobs)		5,007	4,626	4,268	4,170	3,706	2,540
By resource sector - Nuclear (jobs)		0	0	0	0	0	0
By resource sector - Oil (jobs)		6,801	5,928	5,041	3,591	2,673	1,833
By resource sector - Solar (jobs)		5,299	4,782	4,742	5,096	5,441	7,977
By resource sector - Wind (jobs)		1,129	1,652	2,217	2,215	1,794	1,625
By education level - All sectors - High		11,573	11,774	12,110	12,672	10,815	10,045
school diploma or less (jobs)							
By education level - All sectors -		8,394	8,704	8,993	9,540	8,196	7,623
Associates degree or some college (jobs)							
By education level - All sectors -		5,924	5,912	5,922	6,025	5,125	4,719
Bachelors degree (jobs)							•
By education level - All sectors - Masters		1,414	1,424	1,425	1,464	1,261	1,172
or professional degree (jobs)		,	<i>,</i>	, -	, -	, -	,
By education level - All sectors - Doctoral		200	198	194	197	175	170
degree (jobs)							
Related work experience - All sectors -		3,890	4,011	4,122	4,339	3,723	3,459
None (jobs)		,					•
Related work experience - All sectors - Up		5,411	5,473	5,619	5,868	5,029	4,750
to 1 year (jobs)		-,	, -	-,-	-,	-,-	,
Related work experience - All sectors - 1		10,081	10,218	10,416	10,836	9,262	8,558
to 4 years (jobs)		.,	, -	,	,	, -	-,
Related work experience - All sectors - 4		6,392	6,548	6,689	6,996	5,985	5,519
to 10 years (jobs)		5,51	5,5 15	5,551	7, 10	7, 55	-,
Related work experience - All sectors -		1,731	1,762	1,797	1,859	1,573	1,443
Over 10 years (jobs)		, -	, -	,	,	,	, -
On-the-Job Training - All sectors - None		1,507	1,509	1,524	1,569	1,352	1,284
(jobs)		.,001	.,007	.,62 .	.,007	.,002	.,_0 .
On-the-Job Training - All sectors - Up to 1		18,340	18,523	18,894	19,583	16,690	15,493
year (jobs)		,.	,	,	,	,	,
On-the-Job Training - All sectors - 1 to 4		5,676	5,884	6,058	6,411	5,498	5,067
years (jobs)		0,0.0	3,33 .	3,000	9,	0, ., 0	3,55.
On-the-Job Training - All sectors - 4 to 10		1,719	1,830	1,897	2,057	1,796	1,662
years (jobs)		.,,	.,000	1,671	2,001	1,1.70	1,002
On-the-Job Training - All sectors - Over 10		263	266	271	278	237	225
years (jobs)		200	200		2.0	20.	220
On-Site or In-Plant Training - All sectors -		4,382	4,454	4,538	4,719	4,052	3,813
None (jobs)		.,002	.,,,,,,	.,000	.,, .,	.,002	3,010
On-Site or In-Plant Training - All sectors -		16,673	16,848	17,194	17,846	15,212	14,101
Up to 1 year (jobs)		10,010	10,040	11,174	11,040	10,212	1-1,101
op to i your (Jobo)							

Table 39: E+RE- scenario - IMPACTS - Jobs (continued)

Item	2020	2025	2030	2035	2040	2045	2050
On-Site or In-Plant Training - All sectors -		4,436	4,582	4,714	4,974	4,261	3,931
1 to 4 years (jobs)							
On-Site or In-Plant Training - All sectors -		1,798	1,894	1,952	2,093	1,819	1,674
4 to 10 years (jobs)							
On-Site or In-Plant Training - All sectors -		218	234	245	265	229	211
Over 10 years (jobs)							
Wage income - All (million \$2019)		1,479	1,522	1,567	1,650	1,424	1,318

Table 40: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	304	290	260	223	188	168	161
Final energy use - Residential (PJ)	126	122	118	106	90.4	79.2	72.3
Final energy use - Commercial (PJ)	103	103	101	94.8	87.6	82.5	80.3
Final energy use - Industry (PJ)	86.5	89.3	90.2	96.9	111	116	122

Table 41: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.72	1.81	3.2	3.44	3.67	3.91
Cumulative 5-yr (billion \$2018)							

Table 42: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	48.6	240	431	1,101	1,770	2,306	2,841
Vehicle stocks - LDV – All others (1000 units)	2,369	2,255	2,142	1,561	980	554	129
Light-duty vehicle capital costs vs. REF - Cumulative 5-yr (million \$2018)		449	1,171	1,866	2,839	3,076	2,940
Public EV charging plugs - DC Fast (1000 units)	0.174		0.748		3.07		4.93
Public EV charging plugs - L2 (1000 units)	1.07		18		73.9		119

Table 43: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	3.03	9.9	34.8	79.5	87.6	88.4	88.2
Heat Pump (%)							
Sales of space heating units - Electric	3.81	7.35	5.69	2.51	1.97	1.95	1.97
Resistance (%)							
Sales of space heating units - Gas (%)	89.6	73.5	50.6	9.98	2.86	2.43	2.43
Sales of space heating units - Fossil (%)	3.57	9.24	8.91	8.06	7.57	7.25	7.38
Sales of water heating units - Electric	0	1.51	15.7	41.6	46.2	46.5	46.5
Heat Pump (%)							
Sales of water heating units - Electric	7.01	15.7	26.3	48.5	52.5	52.7	52.7
Resistance (%)							
Sales of water heating units - Gas Furnace	92.3	82	57.3	9.09	0.535	0	0
(%)							
Sales of water heating units - Other (%)	0.642	0.79	0.79	0.787	0.779	0.778	0.778
Sales of cooking units - Electric	37.1	50.5	91.5	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	62.9	49.5	8.47	0.426	0	0	0
Residential HVAC investment in 2020s vs.		2.76	3.21				
REF - Cumulative 5-yr (billion \$2018)							

Table 44: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.749	8.98	33.5	81.9	90.4	91	91
Heat Pump (%)							
Sales of space heating units - Electric	0.855	3.41	4.83	7.94	8.5	8.54	8.55
Resistance (%)							
Sales of space heating units - Gas (%)	98.4	87.4	61.6	10.2	1.06	0.491	0.49
Sales of space heating units - Fossil (%)	0	0.208	0.04	0.002	0	0	0
Sales of water heating units - Electric	0.008	1.61	16.7	45	50	50.3	50.3
Heat Pump (%)							
Sales of water heating units - Electric	0.41	2.69	16.3	44.1	49	49.3	49.3
Resistance (%)							
Sales of water heating units - Gas (%)	99.5	95.3	66.6	10.6	0.622	0	0
Sales of water heating units - Other (%)	0.1	0.381	0.381	0.382	0.381	0.381	0.381
Sales of cooking units - Electric	41.9	54.6	83	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Commercial HVAC investment in 2020s -		7,533	8,381				
Cumulative 5-yr (million \$2018)							

Table 45: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	4,894	3,250	0	0	0	0	0
Installed thermal - Natural gas (MW)	2,926	2,933	4,654	5,524	6,790	6,910	6,101
Installed thermal - Nuclear (MW)	0	0	0	0	0	0	0
Installed renewables - Rooftop PV (MW)	540	833	1,113	1,450	1,851	2,318	2,871
Installed renewables - Solar - Base land use assumptions (MW)	2,257	3,429	4,275	4,632	5,170	6,025	6,025
Installed renewables - Wind - Base land use assumptions (MW)	547	648	2,256	6,188	9,180	10,692	12,254
Installed renewables - Solar - Constrained land use assumptions (MW)	846	1,192	1,192	1,192	3,836	6,047	6,047
Installed renewables - Wind - Constrained land use assumptions (MW)	1,102	1,672	3,024	7,459	10,294	11,835	12,748
Installed renewables - Offshore Wind - Constrained land use assumptions (MW)	0	0	0	0	0	0	0
Capital invested - Solar PV - Base (billion \$2018)		1.57	1.01	0.394	0.559	0.839	0
Capital invested - Wind - Base (billion \$2018)		0.149	2.14	4.88	3.54	1.7	1.52
Capital invested - Solar PV - Constrained (billion \$2018)		0.463	0	0	2.75	2.17	0
Capital invested - Wind - Constrained (billion \$2018)		0.838	1.8	5.5	3.35	1.73	0.966

Table 46: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	5,120	7,580	9,365	10,069	11,200	12,995	12,995
Wind - Base land use assumptions (GWh)	1,617	1,915	6,527	17,598	25,700	29,753	33,712
OffshoreWind - Base land use	0	0	0	0	0	0	0
assumptions (GWh)							
Solar - Constrained land use assumptions	2,203	2,914	2,914	2,914	8,694	13,579	13,579
(GWh)							
Wind - Constrained land use assumptions	3,189	4,803	8,587	19,993	26,629	30,153	32,202
(GWh)							
OffshoreWind - Constrained land use	0	0	0	0	0	0	0
assumptions (GWh)							

Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate	2020	2020	2030	2000	2040	2040	-707
regeneration (1000 tCO2e/y)							101
Carbon sink potential - Low - Avoid							-140
deforestation (1000 tC02e/y)							140
Carbon sink potential - Low - Extend							-2,919
rotation length (1000 tC02e/y)							2,7.17
Carbon sink potential - Low - Improve						-	-5.38
plantations (1000 tC02e/y)							0.00
Carbon sink potential - Low - Increase							-9.92
retention of HWP (1000 tCO2e/y)							7.72
Carbon sink potential - Low - Increase							-116
trees outside forests (1000 tC02e/y)							110
Carbon sink potential - Low - Reforest						-	-1,189
cropland (1000 tCO2e/y)							1,107
Carbon sink potential - Low - Reforest							-101
pasture (1000 tC02e/y)							-101
Carbon sink potential - Low - Restore							-1,568
productivity (1000 tC02e/y)							-1,500
Carbon sink potential - Low - All (not							-6,755
counting overlap) (1000 tCO2e/y)							-0,133
Carbon sink potential - Mid - Accelerate							-1,060
regeneration (1000 tCO2e/y)							-1,000
Carbon sink potential - Mid - Avoid							-489
deforestation (1000 tCO2e/y)							-469
• • • • • • • • • • • • • • • • • • • •							F 0/ 0
Carbon sink potential - Mid - Extend							-5,260
rotation length (1000 tC02e/y)							7.00
Carbon sink potential - Mid - Improve							-7.89
plantations (1000 tC02e/y)							10.0
Carbon sink potential - Mid - Increase							-19.8
retention of HWP (1000 tC02e/y)							
Carbon sink potential - Mid - Increase							-224
trees outside forests (1000 tC02e/y)							1700
Carbon sink potential - Mid - Reforest							-1,783
cropland (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-715
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-3,109
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-12,667
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Accelerate							-1,412
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-838
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-7,600
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-10.6
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-29.8
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-332
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest							-2,378
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest						+	-1,329
pasture (1000 tC02e/y)							.,
Carbon sink potential - High - All (not							-18,580
counting overlap) (1000 tCO2e/y)							.5,555
Carbon sink potential - High - Restore						+	-4,651
productivity (1000 tCO2e/y)							1,501
p. 3000, (.000 t0020//)							

Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	205
Land impacted for carbon sink potential - Low - Accelerate regeneration (1000							11
hectares)							
Land impacted for carbon sink potential -							10
Low - Avoid deforestation (over 30 years)							10
(1000 hectares)							
Land impacted for carbon sink potential -							1,48
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1.9
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							(
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							16.
Low - Increase trees outside forests							
(1000 hectares)							78.
Land impacted for carbon sink potential - Low - Reforest cropland (1000 hectares)							10.
Land impacted for carbon sink potential -							6.5
Low - Reforest pasture (1000 hectares)							0.0
Land impacted for carbon sink potential -							93
Low - Restore productivity (1000							,0
hectares)							
Land impacted for carbon sink potential -							2,74
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							17
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							11
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,68
Mid - Extend rotation length (1000							
hectares) Land impacted for carbon sink potential -							2.9
Mid - Improve plantations (1000 hectares)							2.7
Land impacted for carbon sink potential -							1
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -					+		24
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							11
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							47.
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,87
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,03
Mid - Total impacted (over 30 years) (1000							
hectares)							
Land impacted for carbon sink potential -							23
High - Accelerate regeneration (1000							
hectares) Land impacted for carbon sink potential -							11
High - Avoid deforestation (over 30 years)							11
(1000 hectares)							

Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							3,876
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							3.9
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							31.5
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							37.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,542
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,992
High - Total impacted (over 30 years)							
(1000 hectares)							

Table 48: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate deployment - Corn-ethanol to energy grasses (1000 tCO2e/y)							0
Carbon sink potential - Moderate deployment - Cropland measures (1000 tCO2e/y)							-184
Carbon sink potential - Moderate deployment - Permanent conservation cover (1000 tCO2e/y)							-7.84
Carbon sink potential - Moderate deployment - Total (1000 tCO2e/y)							-192
Carbon sink potential - Aggressive deployment - Corn-ethanol to energy grasses (1000 tCO2e/y)							0
Carbon sink potential - Aggressive deployment - Cropland measures (1000 tCO2e/y)							-360
Carbon sink potential - Aggressive deployment - Permanent conservation cover (1000 tCO2e/y)							-15.7
Carbon sink potential - Aggressive deployment - Total (1000 tC02e/y)							-376
Land impacted for carbon sink - Moderate deployment - Corn-ethanol to energy grasses (1000 hectares)							0
Land impacted for carbon sink - Moderate deployment - Cropland measures (1000 hectares)							329
Land impacted for carbon sink - Moderate deployment - Permanent conservation cover (1000 hectares)							12.1
Land impacted for carbon sink - Moderate deployment - Total (1000 hectares)							341

Table 48: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							646
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							24.1
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							670
Aggressive deployment - Total (1000							
hectares)							

Table 49: E-B+ scenario - IMPACTS - Health							
Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Fuel Comb - Electric Generation - Coal (deaths)		17.8	0.021	0.021	0.018	0.012	0
Premature deaths from air pollution - Fuel Comb - Electric Generation - Natural Gas (deaths)		4.53	2.69	1.98	1.59	1	0.951
Premature deaths from air pollution - Mobile - On-Road (deaths)		85.1	89.6	90.6	84.5	69.4	49.1
Premature deaths from air pollution - Gas Stations (deaths)		4.01	4.21	4.23	3.95	3.28	2.4
Premature deaths from air pollution - Fuel Comb - Residential - Natural Gas (deaths)		16.7	16.8	16.6	15.4	12.8	9.15
Premature deaths from air pollution - Fuel Comb - Residential - Oil (deaths)		0.078	0.076	0.071	0.063	0.054	0.045
Premature deaths from air pollution - Fuel Comb - Residential - Other (deaths)		0.631	0.673	0.711	0.702	0.611	0.48
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Coal (deaths)		0.053	0.053	0.052	0.051	0.05	0.048
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (deaths)		5.21	5.24	5.16	4.79	4.06	3.09
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths)		0.423	0.377	0.337	0.299	0.261	0.224
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths)		0.842	0.787	0.727	0.66	0.588	0.516
Premature deaths from air pollution - Industrial Processes - Coal Mining (deaths)		0.187	0.026	0.026	0.025	0.024	0.022
Premature deaths from air pollution - Industrial Processes - Oil & Gas Production (deaths)		21.4	19.9	17.7	15.9	14.3	10.3
Monetary damages from air pollution - Fuel Comb - Electric Generation - Coal (million \$2019)		158	0.183	0.183	0.163	0.107	0
Monetary damages from air pollution - Fuel Comb - Electric Generation - Natural Gas (million \$2019)		40.1	23.8	17.5	14.1	8.86	8.42
Monetary damages from air pollution - Mobile - On-Road (million \$2019)		757	796	806	751	617	436
Monetary damages from air pollution - Gas Stations (million \$2019)		35.5	37.3	37.5	34.9	29	21.3

Table 49: E-B+ scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Fuel Comb - Residential - Natural Gas (million \$2019)		148	149	147	137	113	81.1
Monetary damages from air pollution - Fuel Comb - Residential - Oil (million \$2019)		0.691	0.676	0.629	0.555	0.48	0.402
Monetary damages from air pollution - Fuel Comb - Residential - Other (million \$2019)		5.59	5.96	6.3	6.22	5.41	4.25
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Coal (million \$2019)		0.473	0.47	0.463	0.453	0.439	0.422
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (million \$2019)		46.1	46.4	45.6	42.4	35.9	27.4
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Oil (million \$2019)		3.75	3.34	2.99	2.64	2.31	1.98
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Other (million \$2019)		7.46	6.96	6.43	5.84	5.21	4.56
Monetary damages from air pollution - Industrial Processes - Coal Mining (million \$2019)		1.65	0.228	0.228	0.221	0.21	0.196
Monetary damages from air pollution - Industrial Processes - Oil & Gas Production (million \$2019)		190	177	157	141	127	91

Table 50: E-B+ scenario - IMPACTS - Jobs

By economic sector - Construction (jobs) 4,748 6,728 5,694 5,098 5,338 6,838	Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Manufacturing (jobs) 3,843 5,127 4,339 3,445 3,570 3,890 (jobs) By economic sector - Mining (jobs) 4,891 3,407 2,581 1,959 1,454 865 By economic sector - Other (jobs) 470 640 6629 658 760 1,366 By economic sector - Pipeline (jobs) 399 348 302 267 224 155 By economic sector - Professional (jobs) 2,733 3,440 2,934 2,731 2,939 3,834 By economic sector - Trade (jobs) 2,767 2,768 2,423 2,222 2,244 2,763 By economic sector - Utilities (jobs) 3,872 6,954 4,905 3,957 4,300 4,765 By resource sector - Biomass (jobs) 18.6 17.7 8.3 7.61 6.97 6.28 By resource sector - CO2 (jobs) 0 0 0 0 0 0 0 51.8 By resource sector - CO2 (jobs) 2,667 1,041 532 465 418 369 By resource sector - Grid (jobs) 4,640 12,081 8,577 6,510 7,295 8,514 By resource sector - Natural Gas (jobs) 4,790 3,776 2,791 2,413 2,018 1,403 By resource sector - Natural Gas (jobs) 4,790 3,776 2,791 2,413 2,018 1,403 By resource sector - Oil (jobs) 6,829 6,068 5,411 4,764 4,011 2,433 By resource sector - Solar (jobs) 3,430 3,435 3,688 3,806 4,202 7,982 By resource sector - Wind (jobs) 1,356 3,000 2,802 2,372 2,880 3,715 By education level - All sectors - High 9,939 12,365 10,043 8,560 8,762 10,286 By education level - All sectors - Figh 5,220 6,203 5,020 4,288 4,334 4,968 By education level - All sectors - Solar (jobs) By education level - All sectors - Bachelors degree (jobs) By education level - All sectors - Masters 1,239 1,483 1,198 1,033 1,052 1,230 1,230 1,230 1,483 1,198 1,033 1,052 1,230 1,230 1,230 1,230 1,483 1,198 1,033 1,052 1,230			4.69	6.56	2.45		- 1	1.33
By economic sector - Mining (jobs)	By economic sector - Construction (jobs)		4,748	6,728	5,694	5,098	5,338	6,838
By economic sector - Mining (jobs) 4,891 3,407 2,581 1,959 1,454 862	By economic sector - Manufacturing		3,843	5,127	4,339	3,445	3,570	3,890
By economic sector - Other (jobs) 470 640 629 658 760 1,36	(jobs)							
By economic sector - Pipeline (jobs) 399 348 302 267 224 159	,		4,891	3,407	2,581	1,959	1,454	862
By economic sector - Professional (jobs) 2,733 3,440 2,934 2,731 2,939 3,834	By economic sector - Other (jobs)		470	640	629	658	760	1,367
By economic sector - Trade (jobs) 2,767 2,768 2,423 2,222 2,244 2,765 2,765 2,768 2,423 2,222 2,244 2,765	By economic sector - Pipeline (jobs)		399	348	302	267	224	159
By economic sector - Utilities (jobs) 3,872 6,954 4,905 3,957 4,300 4,763 By resource sector - Biomass (jobs) 18.6 17.7 8.3 7.61 6.97 6.28 By resource sector - CO2 (jobs) 0 0 0 0 0 0 0 51.8 By resource sector - CO2 (jobs) 2,667 1,041 532 465 418 369 By resource sector - Grid (jobs) 4,640 12,081 8,577 6,510 7,295 8,514 By resource sector - Natural Gas (jobs) 4,790 3,776 2,791 2,413 2,018 1,403 By resource sector - Nuclear (jobs) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	By economic sector - Professional (jobs)		2,733	3,440	2,934	2,731	2,939	3,834
By resource sector - Biomass (jobs) 18.6 17.7 8.3 7.61 6.97 6.26	By economic sector - Trade (jobs)		2,767	2,768	2,423	2,222	2,244	2,763
By resource sector - CO2 (jobs) 0 0 0 0 0 51.8 By resource sector - Coal (jobs) 2,667 1,041 532 465 418 369 By resource sector - Grid (jobs) 4,640 12,081 8,577 6,510 7,295 8,514 By resource sector - Natural Gas (jobs) 4,790 3,776 2,791 2,413 2,018 1,403 By resource sector - Nuclear (jobs) 0 <td>By economic sector - Utilities (jobs)</td> <td></td> <td>3,872</td> <td>6,954</td> <td>4,905</td> <td>3,957</td> <td>4,300</td> <td>4,763</td>	By economic sector - Utilities (jobs)		3,872	6,954	4,905	3,957	4,300	4,763
By resource sector - Coal (jobs) 2,667 1,041 532 465 418 369 By resource sector - Grid (jobs) 4,640 12,081 8,577 6,510 7,295 8,514 By resource sector - Natural Gas (jobs) 4,790 3,776 2,791 2,413 2,018 1,403 By resource sector - Nuclear (jobs) 0			18.6	17.7	8.3	7.61	6.97	6.28
By resource sector - Grid (jobs)	By resource sector - CO2 (jobs)		0	0	0	0	0	51.8
By resource sector - Natural Gas (jobs) 4,790 3,776 2,791 2,413 2,018 1,403 By resource sector - Nuclear (jobs) 0	By resource sector - Coal (jobs)		2,667	1,041	532	465	418	369
By resource sector - Nuclear (jobs) 0	By resource sector - Grid (jobs)		4,640	12,081	8,577	6,510	7,295	8,514
By resource sector - Oil (jobs) 6,829 6,068 5,411 4,764 4,011 2,432	By resource sector - Natural Gas (jobs)		4,790	3,776	2,791	2,413	2,018	1,403
By resource sector - Solar (jobs) 3,430 3,435 3,688 3,806 4,202 7,982 By resource sector - Wind (jobs) 1,356 3,000 2,802 2,372 2,880 3,719 By education level - All sectors - High school diploma or less (jobs) 9,939 12,365 10,043 8,560 8,762 10,286 By education level - All sectors - Associates degree or some college (jobs) 7,157 9,167 7,380 6,309 6,531 7,808 By education level - All sectors - Bachelors degree (jobs) 5,220 6,203 5,020 4,288 4,334 4,968 By education level - All sectors - Masters or professional degree (jobs) 1,239 1,483 1,198 1,033 1,052 1,23	By resource sector - Nuclear (jobs)		0	0	0	0	0	0
By resource sector - Wind (jobs) 1,356 3,000 2,802 2,372 2,880 3,719 By education level - All sectors - High school diploma or less (jobs) 9,939 12,365 10,043 8,560 8,762 10,286 By education level - All sectors - Associates degree or some college (jobs) 7,157 9,167 7,380 6,309 6,531 7,808 By education level - All sectors - Bachelors degree (jobs) 5,220 6,203 5,020 4,288 4,334 4,968 By education level - All sectors - Masters or professional degree (jobs) 1,239 1,483 1,198 1,033 1,052 1,23	By resource sector - Oil (jobs)		6,829	6,068	5,411	4,764	4,011	2,432
By education level - All sectors - High school diploma or less (jobs) 9,939 12,365 10,043 8,560 8,762 10,286 By education level - All sectors - Associates degree or some college (jobs) 7,157 9,167 7,380 6,309 6,531 7,808 By education level - All sectors - Bachelors degree (jobs) 5,220 6,203 5,020 4,288 4,334 4,968 By education level - All sectors - Masters or professional degree (jobs) 1,239 1,483 1,198 1,033 1,052 1,23	By resource sector - Solar (jobs)		3,430	3,435	3,688	3,806	4,202	7,982
school diploma or less (jobs) 7,157 9,167 7,380 6,309 6,531 7,808 Associates degree or some college (jobs) 5,220 6,203 5,020 4,288 4,334 4,968 Bachelors degree (jobs) 5,220 1,239 1,483 1,198 1,033 1,052 1,23 or professional degree (jobs) 1,239 1,483 1,198 1,033 1,052 1,23	By resource sector - Wind (jobs)		1,356	3,000	2,802	2,372	2,880	3,719
By education level - All sectors - Associates degree or some college (jobs) 7,157 9,167 7,380 6,309 6,531 7,808 By education level - All sectors - Bachelors degree (jobs) 5,220 6,203 5,020 4,288 4,334 4,968 By education level - All sectors - Masters or professional degree (jobs) 1,239 1,483 1,198 1,033 1,052 1,23	By education level - All sectors - High		9,939	12,365	10,043	8,560	8,762	10,286
Associates degree or some college (jobs) By education level - All sectors - 5,220 6,203 5,020 4,288 4,334 4,968 Bachelors degree (jobs) By education level - All sectors - Masters 1,239 1,483 1,198 1,033 1,052 1,23 or professional degree (jobs)	school diploma or less (jobs)							
By education level - All sectors - Bachelors degree (jobs) 5,220 6,203 5,020 4,288 4,334 4,968 By education level - All sectors - Masters or professional degree (jobs) 1,239 1,483 1,198 1,033 1,052 1,23	By education level - All sectors -		7,157	9,167	7,380	6,309	6,531	7,808
Bachelors degree (jobs) By education level - All sectors - Masters 1,239 1,483 1,198 1,033 1,052 1,23 or professional degree (jobs)								
By education level - All sectors - Masters 1,239 1,483 1,198 1,033 1,052 1,23 or professional degree (jobs)			5,220	6,203	5,020	4,288	4,334	4,968
or professional degree (jobs)								
	,		1,239	1,483	1,198	1,033	1,052	1,231
	By education level - All sectors - Doctoral		175	200	167	149	152	184
degree (jobs)	degree (jobs)							

Table 50: E-B+ scenario - IMPACTS - Jobs (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Related work experience - All sectors - None (jobs)		3,334	4,206	3,397	2,907	2,988	3,532
Related work experience - All sectors - Up to 1 year (jobs)		4,642	5,747	4,689	4,006	4,118	4,928
Related work experience - All sectors - 1 to 4 years (jobs)		8,740	10,724	8,674	7,413	7,570	8,826
Related work experience - All sectors - 4 to 10 years (jobs)		5,510	6,876	5,545	4,739	4,856	5,688
Related work experience - All sectors - Over 10 years (jobs)		1,505	1,865	1,503	1,272	1,298	1,502
On-the-Job Training - All sectors - None (jobs)		1,304	1,567	1,279	1,100	1,120	1,336
On-the-Job Training - All sectors - Up to 1 year (jobs)		15,928	19,510	15,822	13,490	13,780	16,090
On-the-Job Training - All sectors - 1 to 4 years (jobs)		4,843	6,175	4,963	4,239	4,366	5,161
On-the-Job Training - All sectors - 4 to 10 years (jobs)		1,430	1,888	1,515	1,313	1,366	1,652
On-the-Job Training - All sectors - Over 10 years (jobs)		226	278	229	195	199	237
On-Site or In-Plant Training - All sectors - None (jobs)		3,774	4,665	3,790	3,247	3,333	3,973
On-Site or In-Plant Training - All sectors - Up to 1 year (jobs)		14,469	17,738	14,373	12,252	12,514	14,607
On-Site or In-Plant Training - All sectors - 1 to 4 years (jobs)		3,793	4,811	3,875	3,308	3,402	4,011
On-Site or In-Plant Training - All sectors - 4 to 10 years (jobs)		1,511	1,957	1,572	1,360	1,404	1,672
On-Site or In-Plant Training - All sectors - Over 10 years (jobs)		183	247	198	170	178	213
Wage income - All (million \$2019)		1,284	1,597	1,300	1,122	1,156	1,351

Table 51: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	304	292	270	253	241	225	207
Final energy use - Residential (PJ)	126	122	121	118	114	105	94.6
Final energy use - Commercial (PJ)	103	103	103	102	99.5	96.4	92.8
Final energy use - Industry (PJ)	86.5	89.4	90.4	97.9	112	117	124

Table 52: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

•••	•	•	•				
Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.43	1.48	1.97	2.07	2.75	2.92
Cumulative 5-yr (billion \$2018)							

Table 53: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	37.7	93.7	150	410	669	1,244	1,819
Vehicle stocks - LDV – All others (1000 units)	2,378	2,378	2,378	2,256	2,134	1,644	1,155
Light-duty vehicle capital costs vs. REF - Cumulative 5-yr (million \$2018)		0	76.1	152	522	1,618	2,366
Public EV charging plugs - DC Fast (1000 units)	0.174		0.26		1.16		3.16
Public EV charging plugs - L2 (1000 units)	1.07		6.25		27.9		75.9

Table Ely E Dy acongnia	DTIIAD 1.	Efficiency/Flectrification -	Dooidontial
Tanie 54' F-R+ scenario -	PILLARI	-Miciency/Fiectrification -	KESIAENTIAI

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	3.03	8.14	10.8	19.7	39.7	63.6	77.1
Heat Pump (%)							
Sales of space heating units - Electric	3.81	7.45	7.24	6.69	5.41	3.74	2.75
Resistance (%)							
Sales of space heating units - Gas (%)	89.6	75.1	72.6	64.6	46.5	25	12.6
Sales of space heating units - Fossil (%)	3.57	9.27	9.34	9.11	8.39	7.66	7.61
Sales of water heating units - Electric	0	0.562	2.11	7.14	18.6	32.3	40.2
Heat Pump (%)							
Sales of water heating units - Electric	7.01	15.2	16.4	20.2	29.3	40.6	47.3
Resistance (%)							
Sales of water heating units - Gas Furnace	92.3	83.4	80.7	71.9	51.3	26.3	11.8
(%)							
Sales of water heating units - Other (%)	0.642	0.79	0.789	0.787	0.783	0.781	0.778
Sales of cooking units - Electric	36.9	38.5	44.3	59.5	80.7	93.8	98.3
Resistance (%)							
Sales of cooking units - Gas (%)	63.1	61.5	55.7	40.5	19.3	6.23	1.68
Residential HVAC investment in 2020s vs.		2.75	3.16				
REF - Cumulative 5-yr (billion \$2018)							

Table 55: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.749	7.59	10.3	19	39.5	64.5	79
Heat Pump (%)							
Sales of space heating units - Electric	0.855	3.35	3.5	4.01	5.26	6.85	7.79
Resistance (%)							
Sales of space heating units - Gas (%)	98.4	88.8	86	76.8	55.2	28.6	13.2
Sales of space heating units - Fossil (%)	0	0.241	0.225	0.172	0.092	0.04	0.021
Sales of water heating units - Electric	0.008	0.63	2.29	7.68	20	34.8	43.4
Heat Pump (%)							
Sales of water heating units - Electric	0.41	2	3.48	8.38	19.9	34.2	42.5
Resistance (%)							
Sales of water heating units - Gas (%)	99.5	97	93.8	83.6	59.7	30.6	13.7
Sales of water heating units - Other (%)	0.1	0.381	0.381	0.382	0.381	0.381	0.381
Sales of cooking units - Electric	41.9	46.2	50.2	60.8	75.4	84.6	87.8
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	53.8	49.8	39.2	24.6	15.4	12.2
Commercial HVAC investment in 2020s -		7,532	8,365				
Cumulative 5-yr (million \$2018)							

Table 56: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	4,894	3,250	0	0	0	0	0
Installed thermal - Natural gas (MW)	2,926	2,930	3,381	3,375	3,378	2,661	3,645
Installed thermal - Nuclear (MW)	0	0	0	0	0	0	0
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0

Table 57: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0

Table 58: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0
Conversion capital investment -		0	0	0	0	0	0
Cumulative 5-yr (million \$2018)							
Biomass purchases (million \$2018/y)		0	0	0	0	0	0

Table 59: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	0	0	0	0
Annual - BECCS (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0	0	0	0	0
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - All (MMT)		0	0	0	0	0	0
Cumulative - BECCS (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0	0	0	0	0
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0

Table 60: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
Trunk (km)		0	0	0	0	0	0
Spur (km)		0	0	0	0	0	0
All (km)		0	0	0	0	0	0
Cumulative investment - Trunk (million \$2018)		0	0	0	0	0	0
Cumulative investment - Spur (million \$2018)		0	0	0	0	0	0
Cumulative investment - All (million \$2018)		0	0	0	0	0	0

Table 61: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
Annual (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests

Item 2020 2025 2030	0005 0077	
	2035 2040	-
Carbon sink potential - Low - Accelerate		-707
regeneration (1000 tCO2e/y)		
Carbon sink potential - Low - Avoid		-140
deforestation (1000 tCO2e/y)		
Carbon sink potential - Low - Extend		-2,919
rotation length (1000 tCO2e/y)		
Carbon sink potential - Low - Improve		-5.38
plantations (1000 tCO2e/y)		
Carbon sink potential - Low - Increase		-9.92
retention of HWP (1000 tCO2e/y)		
Carbon sink potential - Low - Increase		-116
trees outside forests (1000 tCO2e/y)		
Carbon sink potential - Low - Reforest		-1,189
cropland (1000 tC02e/y)		
Carbon sink potential - Low - Reforest		-101
pasture (1000 tCO2e/y)		
Carbon sink potential - Low - Restore		-1,568
productivity (1000 tCO2e/y)		.,555
Carbon sink potential - Low - All (not		-6,755
counting overlap) (1000 tC02e/y)		0,100
Carbon sink potential - Mid - Accelerate		-1,060
regeneration (1000 tC02e/y)		-1,000
Carbon sink potential - Mid - Avoid		-489
deforestation (1000 tC02e/y)		-409
Carbon sink potential - Mid - Extend		-5,260
· · · · · · · · · · · · · · · · · · ·		-5,260
rotation length (1000 tC02e/y)		700
Carbon sink potential - Mid - Improve		-7.89
plantations (1000 tCO2e/y)		10.0
Carbon sink potential - Mid - Increase		-19.8
retention of HWP (1000 tCO2e/y)		
Carbon sink potential - Mid - Increase		-224
trees outside forests (1000 tC02e/y)		
Carbon sink potential - Mid - Reforest		-1,783
cropland (1000 tCO2e/y)		
Carbon sink potential - Mid - Reforest		-715
pasture (1000 tCO2e/y)		
Carbon sink potential - Mid - Restore		-3,109
productivity (1000 tCO2e/y)		
Carbon sink potential - Mid - All (not		-12,667
counting overlap) (1000 tCO2e/y)		
Carbon sink potential - High - Accelerate		-1,412
regeneration (1000 tC02e/y)		
Carbon sink potential - High - Avoid		-838
deforestation (1000 tC02e/y)		
Carbon sink potential - High - Extend		-7,600
rotation length (1000 tCO2e/y)		
Carbon sink potential - High - Improve		-10.6
plantations (1000 tCO2e/y)		
Carbon sink potential - High - Increase		-29.8
retention of HWP (1000 tC02e/y)		
Carbon sink potential - High - Increase		-332
trees outside forests (1000 tCO2e/y)		
Carbon sink potential - High - Reforest		-2,378
cropland (1000 tCO2e/y)		2,010
Carbon sink potential - High - Reforest		-1,329
pasture (1000 tC02e/y)		-1,329
		-18,580
Carbon sink potential - High - All (not		-18,580
counting overlap) (1000 tC02e/y)		1 / 54
Carbon sink potential - High - Restore		-4,651
productivity (1000 tCO2e/y)		

Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - Low - Accelerate regeneration (1000							116
hectares) Land impacted for carbon sink potential -							106
Low - Avoid deforestation (over 30 years)							100
(1000 hectares)							
Land impacted for carbon sink potential -							1,485
Low - Extend rotation length (1000							,
hectares)							
Land impacted for carbon sink potential -							1.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares) Land impacted for carbon sink potential -							16.6
Low - Increase trees outside forests							10.0
(1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							6.55
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							933
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,743
Low - Total impacted (over 30 years)							
(1000 hectares) Land impacted for carbon sink potential -							173
Mid - Accelerate regeneration (1000							113
hectares)							
Land impacted for carbon sink potential -							110
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,680
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							2.93
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000 hectares)							
Land impacted for carbon sink potential -							24.1
Mid - Increase trees outside forests (1000							24.1
hectares)							
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							47.3
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,879
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,034
Mid - Total impacted (over 30 years) (1000							
hectares) Land impacted for carbon sink potential -							231
High - Accelerate regeneration (1000							231
hectares)							
Land impacted for carbon sink potential -							113
High - Avoid deforestation (over 30 years)							
(1000 hectares)							

Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							3,876
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							3.9
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							31.5
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							37.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,542
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,992
High - Total impacted (over 30 years)							
(1000 hectares)							

Table 63: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

2020	2025	2030	2035	2040	2045	2050
						0
						-184
						-7.84
						0
						0
						-192
						0
						-360
						-15.7
						0
						_
						0
						· ·
						-376
						510
	2020	2020 2025	2020 2025 2030	2020 2025 2030 2035	2020 2025 2030 2035 2040	2020 2025 2030 2035 2040 2045

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							329
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							12.1
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							0.002
deployment - Cropland to woody energy							
crops (1000 hectares)							
Land impacted for carbon sink - Moderate			+				1.05
deployment - Pasture to energy crops							
(1000 hectares)							
Land impacted for carbon sink - Moderate							342
deployment - Total (1000 hectares)							0.12
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							Ū
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,595
Aggressive deployment - Cropland							1,070
measures (1000 hectares)							
Land impacted for carbon sink -							24.1
Aggressive deployment - Permanent							2-7.1
conservation cover (1000 hectares)							
Land impacted for carbon sink -							0.002
Aggressive deployment - Cropland to							0.002
woody energy crops (1000 hectares)							
Land impacted for carbon sink -							1.05
Aggressive deployment - Pasture to							1.00
energy crops (1000 hectares)							
Land impacted for carbon sink -							1,620
·							1,020
Aggressive deployment - Total (1000							
hectares)							
- 1. //							
Table 64: REF scenario - IMPACTS - Health		·			·	,	
Item	2020	2025	2030	2035	2040	2045	2050

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Fuel Comb - Electric Generation - Coal (deaths)		22.9	17.5	8.4	6.75	6.34	5.97
Premature deaths from air pollution - Fuel Comb - Electric Generation - Natural Gas (deaths)		4.17	3.81	6.36	4.38	6.11	5.78
Premature deaths from air pollution - Mobile - On-Road (deaths)		85.1	90.8	96.6	103	109	115
Premature deaths from air pollution - Gas Stations (deaths)		4	4.25	4.49	4.76	5.03	5.28
Premature deaths from air pollution - Fuel Comb - Residential - Natural Gas (deaths)		16.6	16.9	17.3	17.8	18.4	19.1
Premature deaths from air pollution - Fuel Comb - Residential - Oil (deaths)		0.082	0.081	0.075	0.068	0.064	0.062
Premature deaths from air pollution - Fuel Comb - Residential - Other (deaths)		0.623	0.676	0.743	0.81	0.857	0.9
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Coal (deaths)		0.056	0.058	0.06	0.062	0.063	0.064

Table 64: REF scenario - IMPACTS - Health (continued)

	i (continucu)						
Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Natural		5.26	5.35	5.12	4.79	4.65	4.77
Gas (deaths)							
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths)		0.442	0.445	0.455	0.465	0.476	0.488
Premature deaths from air pollution -		0.88	0.933	0.988	1.04	1.09	1.14
Fuel Comb - Comm/Institutional - Other (deaths)		0.00	0.700	0.700			
Premature deaths from air pollution -		0.502	0.337	0.265	0.253	0.245	0.23
Industrial Processes - Coal Mining (deaths)							
Premature deaths from air pollution -		21.5	23.3	24.5	24	24.4	23.3
Industrial Processes - Oil & Gas Production (deaths)							
Monetary damages from air pollution -		203	155	74.5	59.9	56.2	52.9
Fuel Comb - Electric Generation - Coal (million \$2019)							
Monetary damages from air pollution -		36.9	33.8	56.3	38.8	54.1	51.2
Fuel Comb - Electric Generation - Natural Gas (million \$2019)							
Monetary damages from air pollution - Mobile - On-Road (million \$2019)		757	808	859	914	969	1,026
Monetary damages from air pollution - Gas Stations (million \$2019)		35.4	37.6	39.8	42.2	44.5	46.8
Monetary damages from air pollution - Fuel Comb - Residential - Natural Gas (million \$2019)		147	150	153	158	163	169
Monetary damages from air pollution - Fuel Comb - Residential - Oil (million \$2019)		0.722	0.722	0.669	0.603	0.565	0.548
Monetary damages from air pollution - Fuel Comb - Residential - Other (million		5.52	5.99	6.58	7.18	7.59	7.98
\$2019)		0.404	0.514	0.500	0.57	0.57	0.5/0
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Coal (million \$2019)		0.494	0.514	0.532	0.547	0.56	0.569
Monetary damages from air pollution -		46.6	47.4	45.3	42.4	41.2	42.2
Fuel Comb - Comm/Institutional - Natural Gas (million \$2019)		10.0		10.0	.2	2	12.2
Monetary damages from air pollution -		3.91	3.94	4.03	4.12	4.22	4.32
Fuel Comb - Comm/Institutional - Oil (million \$2019)							
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Other		7.79	8.26	8.75	9.2	9.63	10.1
(million \$2019)							
Monetary damages from air pollution -		4.43	2.97	2.33	2.24	2.17	2.03
Industrial Processes - Coal Mining (million \$2019)							
Monetary damages from air pollution - Industrial Processes - Oil & Gas Production (million \$2019)		191	207	217	213	217	207

Table 65: REF scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		4.45	3.98	3.94	3.21	3.2	3.47
By economic sector - Construction (jobs)		3,139	4,488	4,568	5,817	5,430	6,200
By economic sector - Manufacturing		2,632	3,249	3,750	3,910	3,134	3,141
(jobs)							
By economic sector - Mining (jobs)		5,534	4,363	3,505	2,796	2,330	1,855

Table 65: REF scenario - IMPACTS - Jobs (continued)

Table 65. KEF SCEITUTTO - IMPAGTS - JUDS (C	onunueuj						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Other (jobs)		135	436	500	647	683	1,134
By economic sector - Pipeline (jobs)		409	423	429	409	411	399
By economic sector - Professional (jobs)		2,271	2,575	2,473	2,876	2,714	3,154
By economic sector - Trade (jobs)		2,601	2,560	2,341	2,467	2,352	2,683
By economic sector - Utilities (jobs)		3,929	3,932	3,626	5,451	4,705	4,180
By resource sector - Biomass (jobs)		17.1	16	14.9	13.3	13.6	13.9
By resource sector - CO2 (jobs)		0	0	0	0	0	0
By resource sector - Coal (jobs)		3,785	2,533	1,533	945	727	621
By resource sector - Grid (jobs)		4,677	4,727	4,402	8,652	6,908	6,186
By resource sector - Natural Gas (jobs)		4,962	5,100	5,104	4,747	4,869	4,280
By resource sector - Nuclear (jobs)		0	0	0	0	0	0
By resource sector - Oil (jobs)		6,856	6,133	5,554	5,052	4,669	4,081
By resource sector - Solar (jobs)			2,624	3,194	3,380	3,533	6,498
By resource sector - Wind (jobs)		356	897	1,393	1,588	1,043	1,067
By education level - All sectors - High		8,651	9,248	8,916	10,321	9,202	9,630
school diploma or less (jobs)							
By education level - All sectors -		6,129	6,675	6,476	7,597	6,790	7,144
Associates degree or some college (jobs)							
By education level - All sectors -		4,621	4,800	4,568	5,077	4,527	4,669
Bachelors degree (jobs)							
By education level - All sectors - Masters		1,101	1,145	1,082	1,214	1,090	1,138
or professional degree (jobs)							
By education level - All sectors - Doctoral		151	162	153	167	154	168
degree (jobs)							
Related work experience - All sectors -		2,881	3,110	3,007	3,503	3,139	3,295
None (jobs)							
Related work experience - All sectors - Up		3,974	4,280	4,130	4,754	4,228	4,492
to 1 year (jobs)							
Related work experience - All sectors - 1		7,714	8,129	7,783	8,905	7,959	8,279
to 4 years (jobs)							
Related work experience - All sectors - 4		4,780	5,122	4,933	5,685	5,082	5,288
to 10 years (jobs)							
Related work experience - All sectors -		1,304	1,389	1,343	1,529	1,354	1,395
Over 10 years (jobs)		1110	1.10=		1.000	1.150	
On-the-Job Training - All sectors - None		1,113	1,195	1,146	1,293	1,158	1,236
(jobs)		12.000	11.710	44.450	11.10=		
On-the-Job Training - All sectors - Up to 1		13,970	14,742	14,159	16,135	14,365	14,978
year (jobs)		, 477	, 507		5.407		
On-the-Job Training - All sectors - 1 to 4		4,177	4,527	4,373	5,126	4,585	4,782
years (jobs)		1.010	10/0	1.01/	4.507	4 / 54	4.50/
On-the-Job Training - All sectors - 4 to 10		1,213	1,360	1,314	1,594	1,451	1,536
years (jobs)		100		000	200		
On-the-Job Training - All sectors - Over 10		180	205	203	228	203	217
years (jobs)		0.100	0.470	0.071	0.007	0.404	0.700
On-Site or In-Plant Training - All sectors -		3,199	3,473	3,361	3,837	3,426	3,629
None (jobs)		10.707	10 / 07	10.070	1/ /05	10.077	10 (00
On-Site or In-Plant Training - All sectors -		12,724	13,407	12,863	14,685	13,077	13,622
Up to 1 year (jobs)		0.000	0.5/0	0.400	0.007	0.570	0.707
On-Site or In-Plant Training - All sectors -		3,280	3,542	3,420	3,996	3,572	3,726
1 to 4 years (jobs)		1.007	1.01	1.000	1 / 51	1.501	1.57/
On-Site or In-Plant Training - All sectors -		1,296	1,434	1,382	1,651	1,501	1,576
4 to 10 years (jobs)		157	170	170	007	107	105
On-Site or In-Plant Training - All sectors -		154	173	170	206	186	195
Over 10 years (jobs)		11/1	1.010	1 170	1000	1,000	1 000
Wage income - All (million \$2019)		1,141	1,212	1,172	1,358	1,230	1,282

Table 66: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

••							
Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	304	294	276	267	271	282	297

Table 66: REF scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

The state of the s							
Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Residential (PJ)	126	123	123	125	127	130	132
Final energy use - Commercial (PJ)	103	105	107	106	106	108	113
Final energy use - Industry (PJ)	86.4	92	95.3	99.3	105	112	121

Table 67: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.54	1.6	1.88	1.97	2.43	2.57
Cumulative 5-yr (billion \$2018)							

Table 68: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	2.42	11.3	11.7	12.3	12.7	13	13.3
Heat Pump (%)							
Sales of space heating units - Electric	3.86	7.17	7.1	7.05	7.03	6.83	6.47
Resistance (%)							
Sales of space heating units - Gas (%)	90.1	72.4	72	71.5	71.5	71.7	71.5
Sales of space heating units - Fossil (%)	3.61	9.13	9.24	9.18	8.79	8.45	8.65
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	7.01	14.8	14.8	14.8	14.9	14.9	14.9
Resistance (%)							
Sales of water heating units - Gas Furnace	92.3	84.4	84.4	84.4	84.4	84.4	84.3
(%)							
Sales of water heating units - Other (%)	0.642	0.79	0.789	0.787	0.784	0.782	0.78
Sales of cooking units - Electric	36.3	36.3	36.3	36.3	36.3	36.3	36.3
Resistance (%)							
Sales of cooking units - Gas (%)	63.7	63.7	63.7	63.7	63.7	63.7	63.7
Residential HVAC investment in 2020s vs.		2.68	2.8				
REF - Cumulative 5-yr (billion \$2018)							

Table 69: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.749	14.6	48.1	74.1	78.4	78.8	78.8
Heat Pump (%)							
Sales of space heating units - Electric	0.855	4.29	8.82	15.6	19.9	20.6	20.7
Resistance (%)							
Sales of space heating units - Gas (%)	98.4	80.9	43	10.2	1.68	0.552	0.49
Sales of space heating units - Fossil (%)	0	0.225	0.13	0.037	0.005	0	0
Sales of water heating units - Electric	0.008	0.03	0.03	0.03	0.03	0.03	0.03
Heat Pump (%)							
Sales of water heating units - Electric	0.41	1.46	1.46	1.47	1.46	1.47	1.46
Resistance (%)							
Sales of water heating units - Gas (%)	99.5	98.1	98.1	98.1	98.1	98.1	98.1
Sales of water heating units - Other (%)	0.1	0.381	0.381	0.382	0.381	0.381	0.381
Sales of cooking units - Electric	41.9	44.7	44.7	44.6	44.4	44.5	44.6
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	55.3	55.3	55.4	55.6	55.5	55.4
Commercial HVAC investment in 2020s -		7,440	7,806				
Cumulative 5-yr (million \$2018)							

Table 70: REF scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	4,894	4,316	2,725	878	0	0	0
Installed thermal - Natural gas (MW)	2,926	2,926	3,150	3,726	3,414	3,432	3,955
Installed thermal - Nuclear (MW)	0	0	0	0	0	0	0
Installed renewables - Rooftop PV (MW)	540	833	1,113	1,450	1,851	2,318	2,871

Table 70: REF scenario - PILLAR 2: Clean Electricity - Generating capacity (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Installed renewables - Solar - Base land use assumptions (MW)	768	768	768	768	768	768	768
Installed renewables - Wind - Base land use assumptions (MW)	648	648	1,672	2,726	5,124	6,076	8,504

Table 71: REF scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	2,042	2,042	2,042	2,042	2,042	2,042	2,042
Wind - Base land use assumptions (GWh)	1,915	1,915	4,866	7,868	14,699	17,313	24,028
OffshoreWind - Base land use	0	0	0	0	0	0	0
assumptions (GWh)							

Table 72: REF scenario - PILLAR 6: Land sinks - Forests - REF only

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	-0.72		2.42				0.695
Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y)	-0.008		-0.017				-0.018
Business-as-usual carbon sink - Total (Mt CO2e/y)	-0.728		2.41				0.677

Table 73: REF scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate							-707
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-140
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-2,919
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-5.38
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-9.92
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-116
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-1,189
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-101
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,568
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-6,755
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,060
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-489
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-5,260
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-7.89
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-19.8
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-224
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,783
cropland (1000 tCO2e/y)							

Table 73: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Reforest							-715
pasture (1000 tC02e/y)							0.100
Carbon sink potential - Mid - Restore							-3,109
productivity (1000 tC02e/y)							10 / / 7
Carbon sink potential - Mid - All (not							-12,667
counting overlap) (1000 tC02e/y)							-1,412
Carbon sink potential - High - Accelerate regeneration (1000 tC02e/y)							-1,412
Carbon sink potential - High - Avoid							-838
deforestation (1000 tCO2e/y)							-030
Carbon sink potential - High - Extend							-7,600
rotation length (1000 tCO2e/y)							-1,600
Carbon sink potential - High - Improve							-10.6
plantations (1000 tC02e/y)							-10.0
Carbon sink potential - High - Increase							-29.8
retention of HWP (1000 tCO2e/y)							-27.0
Carbon sink potential - High - Increase							-332
trees outside forests (1000 tC02e/y)							002
Carbon sink potential - High - Reforest							-2,378
cropland (1000 tCO2e/y)							2,010
Carbon sink potential - High - Reforest							-1,329
pasture (1000 tC02e/y)							.,0_,
Carbon sink potential - High - All (not							-18,580
counting overlap) (1000 tCO2e/y)							,
Carbon sink potential - High - Restore							-4,651
productivity (1000 tCO2e/y)							,
Land impacted for carbon sink potential -							116
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							106
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,485
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							16.6
Low - Increase trees outside forests							
(1000 hectares)							70 /
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							/ [[
Land impacted for carbon sink potential - Low - Reforest pasture (1000 hectares)							6.55
Land impacted for carbon sink potential -							933
Low - Restore productivity (1000							933
hectares)							
Land impacted for carbon sink potential -							2,743
Low - Total impacted (over 30 years)							2,143
(1000 hectares)							
Land impacted for carbon sink potential -					+		173
Mid - Accelerate regeneration (1000							113
hectares)							
Land impacted for carbon sink potential -					+		110
							110
Mid - Avoid deforestation (over 30 years)	ı	1					

Table 73: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							2,680
Mid - Extend rotation length (1000							
hectares)							0.00
Land impacted for carbon sink potential -							2.93
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							0/ 1
Land impacted for carbon sink potential -							24.1
Mid - Increase trees outside forests (1000							
hectares)							110
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							47.3
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,879
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,034
Mid - Total impacted (over 30 years) (1000							
hectares)							000
Land impacted for carbon sink potential -							231
High - Accelerate regeneration (1000							
hectares)							110
Land impacted for carbon sink potential -							113
High - Avoid deforestation (over 30 years)							
(1000 hectares)							0.07/
Land impacted for carbon sink potential -							3,876
High - Extend rotation length (1000							
hectares)							0.0
Land impacted for carbon sink potential -							3.9
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							01.5
Land impacted for carbon sink potential -							31.5
High - Increase trees outside forests							
(1000 hectares)							157
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares) Land impacted for carbon sink potential -							37.8
							31.0
High - Reforest pasture (1000 hectares) Land impacted for carbon sink potential -							1 E / 0
•							1,542
High - Restore productivity (1000							
hectares)	+						F 000
Land impacted for carbon sink potential -							5,992
High - Total impacted (over 30 years)							
(1000 hectares)							