Net-Zero America - Missouri data October 29, 2021 (updated January 9, 2022) See the Data Sheet Guide for explanations of the contents of this document. The data herein underlie graphs and tables found in Princeton's Net-Zero America report: E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Final Report, Princeton University, Princeton, NJ, 29 October 2021. Report available at https://net-zeroamerica.princeton.edu. # **Contents** | 1 | E+ scenario - IMPACTS - Health | 1 | |----|--|----| | 2 | E+ scenario - IMPACTS - Jobs | 2 | | 3 | E+ scenario - IMPACTS - Fossil fuel industries | 3 | | 4 | E+ scenario - PILLAR 1: Efficiency/Electrification - Overview | 3 | | 5 | E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 3 | | 6 | E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation | 3 | | 7 | E+ scenario - PILLAR 1: Efficiency/Electrification - Residential | 4 | | 8 | E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial | 4 | | 9 | E+ scenario - PILLAR 2: Clean Electricity - Generating capacity | 4 | | 10 | E+ scenario - PILLAR 2: Clean Electricity - Generation | 5 | | 11 | E+ scenario - PILLAR 3: Clean fuels - Bioenergy | 5 | | 12 | E+ scenario - PILLAR 4: CCUS - CO2 capture | 5 | | 13 | E+ scenario - PILLAR 4: CCUS - CO2 pipelines | 6 | | 14 | E+ scenario - PILLAR 4: CCUS - CO2 storage | 6 | | 15 | E+ scenario - PILLAR 6: Land sinks - Forests | 6 | | 16 | E+ scenario - PILLAR 6: Land sinks - Agriculture | 8 | | 17 | E- scenario - IMPACTS - Health | 9 | | 18 | E- scenario - IMPACTS - Jobs | 11 | | 19 | E- scenario - PILLAR 1: Efficiency/Electrification - Overview | 12 | | 20 | E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 12 | | 21 | E- scenario - PILLAR 1: Efficiency/Electrification - Transportation | 12 | | 22 | E- scenario - PILLAR 1: Efficiency/Electrification - Residential | 12 | | 23 | E- scenario - PILLAR 1: Efficiency/Electrification - Commercial | 12 | | 24 | E- scenario - PILLAR 2: Clean Electricity - Generating capacity | 13 | | 25 | E- scenario - PILLAR 6: Land sinks - Forests | 13 | | 26 | E- scenario - PILLAR 6: Land sinks - Agriculture | 15 | | 27 | E+RE+ scenario - IMPACTS - Health | 16 | | 28 | E+RE+ scenario - IMPACTS - Jobs | 17 | | 29 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview | 18 | | 30 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 19 | | 31 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation | 19 | | 32 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential | 19 | | 33 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial | 19 | | 34 | E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity | 20 | | 35 | E+RE+ scenario - PILLAR 2: Clean Electricity - Generation | 20 | | 36 | E+RE+ scenario - PILLAR 6: Land sinks - Forests | 20 | | 37 | E+RE+ scenario - PILLAR 6: Land sinks - Agriculture | 23 | | 38 | E+RE- scenario - IMPACTS - Health | 23 | | 39 | E+RE- scenario - IMPACTS - Jobs | 25 | | 40 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview | 26 | | 41 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 26 | | 42 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation | 26 | | 43 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential | 26 | | 44 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial | 27 | |----|---|----| | 45 | E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity | 27 | | 46 | E+RE- scenario - PILLAR 2: Clean Electricity - Generation | 27 | | 47 | E+RE- scenario - PILLAR 6: Land sinks - Forests | 28 | | 48 | E+RE- scenario - PILLAR 6: Land sinks - Agriculture | 30 | | 49 | E-B+ scenario - IMPACTS - Health | 31 | | 50 | E-B+ scenario - IMPACTS - Jobs | 32 | | 51 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview | 33 | | 52 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 33 | | 53 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation | 34 | | 54 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential | 34 | | 55 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial | 34 | | 56 | E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity | 34 | | 57 | E-B+ scenario - PILLAR 2: Clean Electricity - Generation | 35 | | 58 | E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy | 35 | | 59 | E-B+ scenario - PILLAR 4: CCUS - CO2 capture | 35 | | 60 | E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines | 35 | | 61 | E-B+ scenario - PILLAR 4: CCUS - CO2 storage | 36 | | 62 | E-B+ scenario - PILLAR 6: Land sinks - Forests | 36 | | 63 | E-B+ scenario - PILLAR 6: Land sinks - Agriculture | 38 | | 64 | REF scenario - IMPACTS - Health | 39 | | 65 | REF scenario - IMPACTS - Jobs | 41 | | 66 | REF scenario - PILLAR 1: Efficiency/Electrification - Overview | 42 | | 67 | REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 42 | | 68 | REF scenario - PILLAR 1: Efficiency/Electrification - Residential | 42 | | 69 | REF scenario - PILLAR 1: Efficiency/Electrification - Commercial | 42 | | 70 | REF scenario - PILLAR 2: Clean Electricity - Generating capacity | 43 | | 71 | REF scenario - PILLAR 2: Clean Electricity - Generation | 43 | | 72 | REF scenario - PILLAR 6: Land sinks - Forests - REF only | 43 | | 73 | REF scenario - PILLAR 6: Land sinks - Forests | 43 | Table 1: E+ scenario - IMPACTS - Health | Table 1: <i>E+ scenario - IMPACTS - Health</i>
Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|-------|-------|-------|--------|-------|--------| | Premature deaths from air pollution - | 2020 | 62.8 | 0.052 | 0.05 | 0.042 | 0.028 | 0.001 | | Fuel Comb - Electric Generation - Coal (deaths) | | 02.0 | 5.552 | 0.00 | J.U-12 | 5.020 | 3.001 | | Premature deaths from air pollution -
Fuel Comb - Electric Generation - Natural | | 23.4 | 12.4 | 6.2 | 4.87 | 2.59 | 1.25 | | Gas (deaths) Premature deaths from air pollution - | | 146 | 136 | 103 | 59.5 | 27.6 | 11.6 | | Mobile - On-Road (deaths) Premature deaths from air pollution - Gas | | 11.4 | 10.5 | 7.88 | 4.68 | 2.33 | 1.16 | | Stations (deaths) Premature deaths from air pollution - | | 22.2 | 17.8 | 11.6 | 6.23 | 2.82 | 1.1 | | Fuel Comb - Residential - Natural Gas
(deaths) | | 0.5/5 | 0.770 | 0.215 | 0.100 | 0.007 | 0.0/.5 | | Premature deaths from air pollution - Fuel Comb - Residential - Oil (deaths) | | 0.545 | 0.448 | 0.315 | 0.193 | 0.096 | 0.045 | | Premature deaths from air pollution -
Fuel Comb - Residential - Other (deaths) | | 4.05 | 3.67 | 2.81 | 1.81 | 0.904 | 0.365 | | Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Coal (deaths) | | 5.84 | 5.59 | 5.32 | 5.02 | 4.72 | 4.41 | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional - Natural
Gas (deaths) | | 16.2 | 13.9 | 10.2 | 6.49 | 3.84 | 2.2 | | Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths) | | 1.97 | 1.63 | 1.28 | 0.946 | 0.657 | 0.418 | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional - Other
(deaths) | | 1.38 | 1.15 | 0.937 | 0.728 | 0.531 | 0.348 | | Premature deaths from air pollution -
Industrial Processes - Coal Mining
(deaths) | | 2.81 | 1.72 | 1.7 | 1.67 | 1.68 | 1.66 | | Premature deaths from air pollution -
Industrial Processes - Oil & Gas
Production (deaths) | | 94 | 88.3 | 80.3 | 62.4 | 46.2 | 28.6 | | Monetary damages from air pollution -
Fuel Comb - Electric Generation - Coal
(million \$2019) | | 556 | 0.465 | 0.445 | 0.372 | 0.247 | 0.01 | | Monetary damages from air pollution -
Fuel Comb - Electric Generation - Natural
Gas (million \$2019) | | 207 | 110 | 54.9 | 43.2 | 22.9 | 11.1 | | Monetary damages from air pollution -
Mobile - On-Road (million \$2019) | | 1,300 | 1,208 | 916 | 529 | 246 | 103 | | Monetary damages from air pollution -
Gas Stations (million \$2019) | | 101 | 92.6 | 69.7 | 41.5 | 20.6 | 10.3 | | Monetary damages from air pollution -
Fuel Comb - Residential - Natural Gas
(million \$2019) | | 197 | 158 | 103 | 55.2 | 25 | 9.74 | | Monetary damages from air pollution -
Fuel Comb - Residential - Oil (million
\$2019) | | 4.83 | 3.97 | 2.79 | 1.71 | 0.849 | 0.394 | | Monetary damages from air pollution -
Fuel Comb - Residential - Other (million
\$2019) | | 35.9 | 32.5 | 24.9 | 16 | 8.01 | 3.23 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Coal
(million \$2019) | | 51.7 | 49.5 | 47.1 | 44.5 | 41.8 | 39 | | Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (million \$2019) | | 144 | 123 | 90.6 | 57.5 | 34 | 19.5 | Table 1: E+ scenario - IMPACTS - Health (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Monetary damages from air pollution - | | 17.5 | 14.4 | 11.3 | 8.38 | 5.81 | 3.7 | | Fuel Comb - Comm/Institutional - Oil | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 12.2 | 10.2 | 8.29 | 6.44 | 4.7 | 3.08 | | Fuel Comb - Comm/Institutional - Other | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 24.8 | 15.2 | 15 | 14.8 | 14.9 | 14.6 | | Industrial Processes - Coal Mining | | | | |
 | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 835 | 784 | 713 | 554 | 411 | 254 | | Industrial Processes - Oil & Gas | | | | | | | | | Production (million \$2019) | | | | | | | | Table 2: E+ scenario - IMPACTS - Jobs | Table 2: E+ Scenario - IMPACTS - Jobs | | | | | | | | |--|------|--------|--------|--------|--------|--------|--------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | By economic sector - Agriculture (jobs) | | 441 | 449 | 431 | 366 | 303 | 742 | | By economic sector - Construction (jobs) | | 14,888 | 16,430 | 24,010 | 31,112 | 25,367 | 25,647 | | By economic sector - Manufacturing (jobs) | | 3,126 | 3,542 | 4,437 | 5,025 | 4,625 | 5,280 | | By economic sector - Mining (jobs) | | 2,224 | 1,584 | 1,073 | 699 | 468 | 322 | | By economic sector - Other (jobs) | | 2,200 | 2,498 | 4,326 | 6,039 | 4,537 | 4,605 | | By economic sector - Pipeline (jobs) | | 404 | 504 | 279 | 221 | 179 | 217 | | By economic sector - Professional (jobs) | | 6,373 | 6,870 | 10,528 | 14,280 | 12,423 | 13,840 | | By economic sector - Trade (jobs) | | 4,817 | 4,937 | 7,159 | 9,484 | 7,994 | 8,604 | | By economic sector - Utilities (jobs) | | 8,787 | 10,795 | 15,278 | 21,439 | 21,466 | 22,993 | | By resource sector - Biomass (jobs) | | 1,042 | 1,028 | 963 | 946 | 1,127 | 3,240 | | By resource sector - CO2 (jobs) | | 14.7 | 1,318 | 91.3 | 194 | 438 | 1,118 | | By resource sector - Coal (jobs) | | 1,495 | 345 | 151 | 132 | 119 | 105 | | By resource sector - Grid (jobs) | | 12,320 | 17,375 | 28,156 | 40,662 | 42,700 | 45,353 | | By resource sector - Natural Gas (jobs) | | 3,513 | 2,388 | 2,008 | 2,340 | 1,045 | 799 | | By resource sector - Nuclear (jobs) | | 624 | 614 | 604 | 350 | 0 | 0 | | By resource sector - Oil (jobs) | | 5,419 | 4,356 | 3,168 | 2,195 | 1,500 | 1,003 | | By resource sector - Solar (jobs) | | 15,499 | 16,130 | 26,727 | 34,639 | 22,327 | 20,589 | | By resource sector - Wind (jobs) | | 3,334 | 4,056 | 5,651 | 7,206 | 8,109 | 10,043 | | By education level - All sectors - High school diploma or less (jobs) | | 18,642 | 20,560 | 29,045 | 37,859 | 32,813 | 34,765 | | By education level - All sectors -
Associates degree or some college (jobs) | | 13,577 | 15,114 | 21,655 | 28,699 | 25,117 | 26,570 | | By education level - All sectors -
Bachelors degree (jobs) | | 8,583 | 9,276 | 13,014 | 17,066 | 15,008 | 16,120 | | By education level - All sectors - Masters or professional degree (jobs) | | 2,130 | 2,312 | 3,301 | 4,374 | 3,858 | 4,173 | | By education level - All sectors - Doctoral degree (jobs) | | 328 | 347 | 504 | 665 | 568 | 621 | | Related work experience - All sectors -
None (jobs) | | 6,304 | 6,974 | 9,898 | 13,028 | 11,370 | 12,092 | | Related work experience - All sectors - Up to 1 year (jobs) | | 8,929 | 9,800 | 13,931 | 18,117 | 15,578 | 16,581 | | Related work experience - All sectors - 1 to 4 years (jobs) | | 15,449 | 16,981 | 24,069 | 31,689 | 27,762 | 29,528 | | Related work experience - All sectors - 4 to 10 years (jobs) | | 10,013 | 11,029 | 15,637 | 20,605 | 18,056 | 19,160 | | Related work experience - All sectors -
Over 10 years (jobs) | | 2,566 | 2,826 | 3,985 | 5,225 | 4,598 | 4,888 | | On-the-Job Training - All sectors - None
(jobs) | | 2,429 | 2,633 | 3,743 | 4,883 | 4,176 | 4,434 | | On-the-Job Training - All sectors - Up to 1 year (jobs) | | 28,131 | 30,849 | 43,596 | 57,089 | 49,894 | 53,296 | | Table 2. F+ | scenario | - IMPACTS - | Inhe | (continued) |) | |-------------------|------------|-------------|------|---------------|---| | I a b i c Z . E T | Scellul lu | - IMPAGIS - | JUUS | ICUIILIIIUEUI | , | | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|--------|--------|--------|--------|--------|--------| | On-the-Job Training - All sectors - 1 to 4 years (jobs) | | 9,156 | 10,180 | 14,513 | 19,187 | 16,798 | 17,718 | | On-the-Job Training - All sectors - 4 to 10 years (jobs) | | 3,117 | 3,484 | 5,014 | 6,666 | 5,793 | 6,067 | | On-the-Job Training - All sectors - Over 10 years (jobs) | | 427 | 464 | 653 | 839 | 703 | 734 | | On-Site or In-Plant Training - All sectors -
None (jobs) | | 7,031 | 7,692 | 10,946 | 14,357 | 12,413 | 13,221 | | On-Site or In-Plant Training - All sectors -
Up to 1 year (jobs) | | 25,609 | 28,114 | 39,745 | 52,067 | 45,519 | 48,552 | | On-Site or In-Plant Training - All sectors -
1 to 4 years (jobs) | | 7,104 | 7,888 | 11,233 | 14,826 | 12,969 | 13,688 | | On-Site or In-Plant Training - All sectors -
4 to 10 years (jobs) | | 3,140 | 3,491 | 4,988 | 6,606 | 5,748 | 6,033 | | On-Site or In-Plant Training - All sectors -
Over 10 years (jobs) | | 377 | 424 | 608 | 808 | 713 | 755 | | Wage income - All (million \$2019) | | 2,345 | 2,610 | 3,732 | 4,970 | 4,424 | 4,767 | # Table 3: E+ scenario - IMPACTS - Fossil fuel industries | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|-------|-------|-------|-------|-------|-------| | Oil consumption - Annual (million bbls) | | 121 | 106 | 83.7 | 62.4 | 45.6 | 32.5 | | Oil consumption - Cumulative (million | | | | | | | 2,577 | | bbls) | | | | | | | | | Oil production - Annual (million bbls) | | 0.117 | 0.117 | 0.117 | 0.093 | 0.075 | 0.05 | | Natural gas consumption - Annual (tcf) | | 249 | 210 | 169 | 127 | 79.8 | 55.4 | | Natural gas consumption - Cumulative | | | | | | | 5,077 | | (tcf) | | | | | | | | | Natural gas production - Annual (tcf) | | 0 | 0 | 0 | 0 | 0 | 0 | ## Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Final energy use - Transportation (PJ) | 669 | 623 | 550 | 461 | 380 | 331 | 311 | | Final energy use - Residential (PJ) | 241 | 227 | 206 | 178 | 155 | 141 | 134 | | Final energy use - Commercial (PJ) | 182 | 178 | 169 | 158 | 147 | 141 | 138 | | Final energy use - Industry (PJ) | 241 | 249 | 271 | 274 | 290 | 326 | 330 | # Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Electricity distribution capital invested - | | 3.82 | 3.92 | 6.23 | 6.6 | 6.19 | 6.47 | | Cumulative 5-yr (billion \$2018) | | | | | | | | ## Table 6: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Vehicle stocks - LDV – EV (1000 units) | 30.1 | 479 | 928 | 2,500 | 4,071 | 5,327 | 6,583 | | Vehicle stocks - LDV – All others (1000 units) | 5,489 | 5,226 | 4,964 | 3,618 | 2,271 | 1,285 | 299 | | Light-duty vehicle capital costs vs. REF - | | 1.055 | 2,704 | 4,381 | 6,637 | 7.223 | 6,887 | | Cumulative 5-yr (million \$2018) | | 1,000 | 2,104 | 4,501 | 0,031 | 1,223 | 0,001 | | Public EV charging plugs - DC Fast (1000 | 0.178 | | 1.98 | | 8.67 | | 14 | | units) | | | | | | | | | Public EV charging plugs - L2 (1000 units) | 1.67 | | 47.5 | | 208 | | 337 | Table 7: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Sales of space heating units - Electric | 7.5 | 22.5 | 72.3 | 86.1 | 87.5 | 87.8 | 87.4 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 19.7 | 22.4 | 10 | 6.61 | 6.36 | 6.55 | 6.72 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas (%) | 63.5 | 41.4 | 10.2 | 1.69 | 1.08 | 1.04 | 1.02 | | Sales of space heating units - Fossil (%) | 9.34 | 13.6 | 7.39 | 5.58 | 5.03 | 4.63 | 4.86 | | Sales of water heating units - Electric | 0 | 8.7 | 46.5 | 56.1 | 56.7 | 56.7 | 56.7 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 42.5 | 55.5 | 45.3 | 43.3 | 43.3 | 43.3 | 43.3 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 57.4 | 35.7 | 8.23 | 0.581 | 0.019 | 0 | 0 | | (%) | | | | | | | | | Sales of water heating units - Other (%) | 0.034 | 0.035 | 0.036 | 0.035 | 0.035 | 0.036 | 0.036 | | Sales of cooking units - Electric | 76.5 | 81.5 | 96.8 | 99.8 | 100 | 100 | 100 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 23.5 | 18.5 | 3.16 | 0.159 | 0 | 0 | 0 | | Residential HVAC investment in 2020s vs. | | 5.85 | 7.79 | | | | | | REF - Cumulative 5-yr (billion \$2018) | | | | | | | | Table 8: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|--------|--------|-------|-------|-------|-------| | Sales of space heating units - Electric | 4.52 | 24.4 | 70.6 | 87.7 | 89.7 | 89.7 | 89.7 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 8.06 | 5.73 | 7.1 | 9.32 | 9.79 | 9.8 | 9.8 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas Furnace | 87.4 | 68.1 | 22 | 2.94 | 0.553 | 0.458 | 0.459 | | (%) | | | | | | | | | Sales of space heating units - Fossil (%) | 0 | 1.75 | 0.337 | 0.014 | 0 | 0 | 0 | | Sales of water heating units - Electric | 1.19 | 10.6 | 53.1 | 64.2 | 65 | 65 | 65 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 10.1 | 11 | 28.4 | 33.8 | 34.3 | 34.3 | 34.3 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 87.7 | 77.5 | 17.8 | 1.26 | 0.041 | 0 | 0 | | (%) | | | | | | | | | Sales of water heating units - Other (%) | 0.996 | 0.947 | 0.735 | 0.688 | 0.685 | 0.688 |
0.687 | | Sales of cooking units - Electric | 44.8 | 57.1 | 84 | 89.3 | 89.6 | 89.6 | 89.6 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 55.2 | 42.9 | 16 | 10.7 | 10.4 | 10.4 | 10.4 | | Commercial HVAC investment in 2020s - | | 16,269 | 17,611 | | | | | | Cumulative 5-yr (million \$2018) | | | | | | | | Table 9: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|-------|--------|--------|--------|--------|---------|---------| | Installed thermal - Coal (MW) | 7,000 | 1,299 | 0 | 0 | 0 | 0 | 0 | | Installed thermal - Natural gas (MW) | 6,692 | 4,262 | 4,288 | 3,916 | 2,586 | 2,383 | 2,172 | | Installed thermal - Nuclear (MW) | 1,236 | 1,236 | 1,236 | 1,236 | 0 | 0 | 0 | | Installed renewables - Rooftop PV (MW) | 153 | 269 | 400 | 605 | 898 | 1,277 | 1,767 | | Installed renewables - Solar - Base land | 33.6 | 9,863 | 18,696 | 35,534 | 55,733 | 61,382 | 63,727 | | use assumptions (MW) | | | | | | | | | Installed renewables - Wind - Base land | 6,593 | 24,947 | 42,054 | 59,780 | 89,561 | 120,496 | 155,043 | | use assumptions (MW) | | | | | | | | | Installed renewables - Solar - | 1,074 | 7,271 | 17,708 | 32,235 | 48,623 | 52,207 | 53,235 | | Constrained land use assumptions (MW) | | | | | | | | | Installed renewables - Wind - Constrained | 4,745 | 26,146 | 49,853 | 78,238 | 92,807 | 95,002 | 95,116 | | land use assumptions (MW) | | | | | | | | | Capital invested - Solar PV - Base (billion | | 13.2 | 10.6 | 18.6 | 21 | 5.54 | 2.17 | | \$2018) | | | | | | | | Table 9: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|-------|-------|------|-------|-------|-------| | Capital invested - Wind - Base (billion | | 28.5 | 22.8 | 22 | 35.2 | 34.7 | 36.6 | | \$2018) | | | | | | | | | Capital invested - Solar PV - Constrained (billion \$2018) | | 9.58 | 11.6 | 13.9 | 23.7 | 1.24 | 0.374 | | Capital invested - Wind - Constrained (billion \$2018) | | 31.6 | 32.5 | 34.5 | 16.2 | 1.98 | 80.4 | | Capital invested - Biomass power plant (billion \$2018) | 0 | 0.003 | 0.021 | 0 | 0.003 | 0 | 0 | | Capital invested - Biomass w/ccu allam power plant (billion \$2018) | 0 | 0 | 0 | 0 | 0 | 0.009 | 0 | | Capital invested - Biomass w/ccu power plant (billion \$2018) | 0 | 0 | 0 | 0 | 1.19 | 0.005 | 0 | Table 10: E+ scenario - PILLAR 2: Clean Electricity - Generation | 14510 101 2 | | | | | | | | |--|--------|--------|---------|---------|---------|---------|---------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Solar - Base land use assumptions (GWh) | 72.4 | 18,541 | 35,193 | 66,831 | 104,688 | 115,313 | 119,768 | | Wind - Base land use assumptions (GWh) | 19,737 | 83,563 | 139,217 | 196,305 | 291,874 | 389,204 | 494,930 | | OffshoreWind - Base land use | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | assumptions (GWh) | | | | | | | | | Solar - Constrained land use assumptions | 0 | 13,674 | 33,346 | 60,726 | 91,519 | 98,271 | 100,217 | | (GWh) | | | | | | | | | Wind - Constrained land use assumptions | 17,665 | 86,986 | 161,857 | 250,834 | 294,590 | 301,857 | 302,230 | | (GWh) | | | | | | | | | OffshoreWind - Constrained land use | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | assumptions (GWh) | | | | | | | | | Biomass power plant (GWh) | 0 | 5.97 | 46.4 | 46.4 | 52.4 | 52.4 | 52.4 | | Biomass w/ccu power plant (GWh) | 0 | 0 | 0 | 0 | 1,335 | 1,341 | 1,341 | | Biomass w/ccu allam power plant (GWh) | 0 | 0 | 0 | 0 | 0 | 9.08 | 9.08 | | | | | | | | | | Table 11: E+ scenario - PILLAR 3: Clean fuels - Bioenergy | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|-------|-------|-------| | Number of facilities - Power (quantity) | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Number of facilities - Power ccu | 0 | 0 | 0 | 0 | 1 | 2 | 2 | | (quantity) | | | | | | | | | Number of facilities - Allam power w ccu | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | (quantity) | | | | | | | | | Number of facilities - Beccs hydrogen | 0 | 0 | 0 | 0 | 1 | 4 | 11 | | (quantity) | | | | | | | | | Number of facilities - Diesel (quantity) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | Number of facilities - Diesel ccu (quantity) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | Number of facilities - Pyrolysis (quantity) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | Number of facilities - Pyrolysis ccu | 0 | 0 | 0 | 0 | 1 | 2 | 2 | | (quantity) | | | | | | | | | Number of facilities - Sng (quantity) | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Number of facilities - Sng ccu (quantity) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Conversion capital investment - | | 3.44 | 23 | 19.7 | 1,705 | 1,881 | 6,256 | | Cumulative 5-yr (million \$2018) | | | | | | | | | Biomass purchases (million \$2018/y) | | 38.3 | 97 | 98 | 192 | 298 | 656 | Table 12: E+ scenario - PILLAR 4: CCUS - CO2 capture | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--------------------------------|------|------|------|------|------|------|------| | Annual - All (MMT) | | 0 | 3.24 | 3.35 | 5.37 | 14.7 | 23.1 | | Annual - BECCS (MMT) | | 0 | 0 | 0 | 2.05 | 4.46 | 12.5 | | Annual - NGCC (MMT) | | 0 | 0 | 0 | 0 | 0 | 0 | | Annual - Cement and lime (MMT) | | 0 | 3.24 | 3.35 | 3.32 | 10.3 | 10.6 | | Cumulative - All (MMT) | | 0 | 3.24 | 6.59 | 12 | 26.7 | 49.8 | | Cumulative - BECCS (MMT) | | 0 | 0 | 0 | 2.05 | 6.51 | 19 | # Table 12: E+ scenario - PILLAR 4: CCUS - CO2 capture (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |------------------------------------|------|------|------|------|------|------|------| | Cumulative - NGCC (MMT) | | 0 | 0 | 0 | 0 | 0 | 0 | | Cumulative - Cement and lime (MMT) | | 0 | 3.24 | 6.59 | 9.91 | 20.2 | 30.8 | # Table 13: E+ scenario - PILLAR 4: CCUS - CO2 pipelines | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|-------|-------|-------|-------|-------| | Trunk (km) | | 0 | 409 | 409 | 409 | 409 | 409 | | Spur (km) | | 0 | 10.4 | 180 | 278 | 550 | 1,148 | | All (km) | | 0 | 420 | 589 | 687 | 959 | 1,557 | | Cumulative investment - Trunk (million
\$2018) | | 0 | 1,950 | 1,950 | 1,950 | 1,950 | 1,950 | | Cumulative investment - Spur (million
\$2018) | | 0 | 11.9 | 160 | 242 | 387 | 895 | | Cumulative investment - All (million
\$2018) | | 0 | 1,962 | 2,109 | 2,192 | 2,337 | 2,845 | # Table 14: E+ scenario - PILLAR 4: CCUS - CO2 storage | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Annual (MMT) | | 0 | 0 | 0.88 | 1.81 | 3.44 | 3.73 | | Injection wells (wells) | | 0 | 1 | 2 | 4 | 7 | 9 | | Resource characterization, appraisal, permitting costs (million \$2020) | | 27.9 | 78.2 | 101 | 101 | 101 | 101 | | Wells and facilities construction costs (million \$2020) | | 0 | 18.6 | 72.5 | 129 | 216 | 268 | #### Table 15: E+ scenario - PILLAR 6: Land sinks - Forests | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - Low - Accelerate | | | | | | | -82 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Avoid | | | | | | | -379 | | deforestation (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Low - Extend | | | | | | | -2,973 | | rotation length (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Improve | | | | | | | -77 | | plantations (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -1,071 | | retention of HWP (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -787 | | trees outside forests (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -5,328 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -1,597 | | pasture (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Restore | | | | | | | -1,244 | | productivity (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - All (not | | | | | | | -13,537 | | counting overlap) (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Accelerate | | | | | | | -123 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Avoid | | | | | | | -1,326 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Extend | | | | | | | -5,357 | | rotation length (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Improve | | | | | | | -113 | | plantations (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Increase | | | | | | | -2,141 | | retention of HWP (1000 tCO2e/y) | | | | | | | | Table 15: E+ scenario - PILLAR 6: Land sinks - Forests (continued) | Item Carbon sink potential - Mid - Increase | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050
-1,517 | |---|------|------|------|------|------|------|----------------| | trees outside forests (1000 tC02e/y) | | | | | | | -1,511 | | Carbon sink potential - Mid - Reforest | | | | | | | -7,992 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Reforest | | | | | | | -11,338 | | pasture (1000 tC02e/y) Carbon sink potential - Mid - Restore | | | | | | | 0 / / 7 | | productivity (1000 tCO2e/y) | | | | | | | -2,467 | | Carbon sink potential - Mid - All (not | | | | | | | -32,374 | | counting overlap) (1000 tCO2e/y) | | | | | | | 0_,0 | | Carbon sink potential - High - Accelerate | | | | | | | -164 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Avoid | | | | | | | -2,274 | | deforestation (1000
tC02e/y) | | | | | | | 77/4 | | Carbon sink potential - High - Extend rotation length (1000 tC02e/y) | | | | | | | -7,741 | | Carbon sink potential - High - Improve | | | | | | | -151 | | plantations (1000 tCO2e/y) | | | | | | | -101 | | Carbon sink potential - High - Increase | | | | | | | -3,212 | | retention of HWP (1000 tCO2e/y) | | | | | | | -, | | Carbon sink potential - High - Increase | | | | | | | -2,247 | | trees outside forests (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Reforest | | | | | | | -10,656 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Reforest | | | | | | | -21,079 | | pasture (1000 tC02e/y) | | | | | | | F1 010 | | Carbon sink potential - High - All (not counting overlap) (1000 tCO2e/y) | | | | | | | -51,213 | | Carbon sink potential - High - Restore | | | | | | | -3,690 | | productivity (1000 tCO2e/y) | | | | | | | 0,070 | | Land impacted for carbon sink potential - | | | | | | | 13.4 | | Low - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 289 | | Low - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,512 | | Low - Extend rotation length (1000 | | | | | | | | | hectares) Land impacted for carbon sink potential - | | | | | | | 27.9 | | Low - Improve plantations (1000 | | | | | | | 21.9 | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Low - Increase retention of HWP (1000 | | | | | | | _ | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 112 | | Low - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 352 | | Low - Reforest cropland (1000 hectares) | | | | | | | 107 | | Land impacted for carbon sink potential -
Low - Reforest pasture (1000 hectares) | | | | | | | 104 | | Land impacted for carbon sink potential - | | | | | | | 740 | | Low - Restore productivity (1000 | | | | | | | 140 | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,151 | | Low - Total impacted (over 30 years) | | | | | | | 3,131 | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 20.1 | | Mid - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | Table 15: E+ scenario - PILLAR 6: Land sinks - Forests (continued) | Thom | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|-------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | | Land impacted for carbon sink potential - | | | | | | | 298 | | Mid - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | 0.700 | | Land impacted for carbon sink potential - | | | | | | | 2,730 | | Mid - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 41.9 | | Mid - Improve plantations (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Mid - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 163 | | Mid - Increase trees outside forests (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 528 | | Mid - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 751 | | Mid - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,490 | | Mid - Restore productivity (1000 | | | | | | | 1,470 | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 6,022 | | · | | | | | | | 0,022 | | Mid - Total impacted (over 30 years) (1000 | | | | | | | | | hectares) | | | | | | | 0/ 0 | | Land impacted for carbon sink potential - | | | | | | | 26.8 | | High - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | 200 | | Land impacted for carbon sink potential - | | | | | | | 308 | | High - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,947 | | High - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 55.7 | | High - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | High - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 214 | | High - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 705 | | High - Reforest cropland (1000 hectares) | | | | | | | , 00 | | Land impacted for carbon sink potential - | | - | | | | | 599 | | High - Reforest pasture (1000 hectares) | | | | | | | 377 | | Land impacted for carbon sink potential - | | | | | | | 1,223 | | | | | | | | | 1,223 | | High - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | 7.077 | | Land impacted for carbon sink potential - | | | | | | | 7,077 | | High - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | Table 16: E+ scenario - PILLAR 6: Land sinks - Agriculture | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|------|------|------|------|------|------|------| | Carbon sink potential - Moderate | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tCO2e/y) | | | | | | | | Table 16: E+ scenario - PILLAR 6: Land sinks - Agriculture (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - Moderate
deployment - Cropland measures (1000 | | | | | | | -7,068 | | tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -157 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -7,225 | | deployment - Total (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -13,495 | | deployment - Cropland measures (1000 | | | | | | | | | tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -313 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -13,808 | | deployment - Total (1000 tCO2e/y) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 3,016 | | deployment - Cropland measures (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 285 | | deployment - Permanent conservation | | | | | | | | | cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 3,301 | | deployment - Total (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 0 | | Aggressive deployment - Corn-ethanol to | | | | | | | | | energy grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 5,748 | | Aggressive deployment - Cropland | | | | | | | | | measures (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 570 | | Aggressive deployment - Permanent | | | | | | | | | conservation cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 6,318 | | Aggressive deployment - Total (1000 | | | | | | | | | hectares) | | | | | | | | Table 17: E- scenario - IMPACTS - Health | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|-------|-------|-------|-------|-------|-------| | Premature deaths from air pollution - | | 62.8 | 0.052 | 0.05 | 0.042 | 0.028 | 0.001 | | Fuel Comb - Electric Generation - Coal | | | | | | | | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 22.7 | 10.5 | 4.66 | 2.24 | 0.862 | 0.676 | | Fuel Comb - Electric Generation - Natural | | | | | | | | | Gas (deaths) | | | | | | | | | Premature deaths from air pollution - | | 149 | 149 | 145 | 131 | 104 | 71.3 | | Mobile - On-Road (deaths) | | | | | | | | | Premature deaths from air pollution - Gas | | 11.6 | 11.7 | 11.2 | 10 | 7.95 | 5.51 | | Stations (deaths) | | | | | | | | | Premature deaths from air pollution - | | 22.4 | 20.3 | 17.8 | 14.5 | 10.6 | 6.8 | | Fuel Comb - Residential - Natural Gas | | | | | | | | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 0.556 | 0.531 | 0.505 | 0.451 | 0.363 | 0.271 | | Fuel Comb - Residential - Oil (deaths) | | | | | | | | Table 17: E- scenario - IMPACTS - Health (continued) | Table 17: E- scenario - IMPACTS - Health (c | ontinueaj | | | | | | | |--|-----------|-------|-------|-------|-------|-------|-------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Premature deaths from air pollution - | | 4.1 | 4.16 | 4.14 | 3.78 | 2.98 | 2.08 | | Fuel Comb - Residential - Other (deaths) | | | | | | | | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional -
Coal
(deaths) | | 5.84 | 5.59 | 5.32 | 5.02 | 4.72 | 4.41 | | Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (deaths) | | 16.3 | 15.6 | 14.6 | 12.7 | 10.1 | 7.49 | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional - Oil | | 1.98 | 1.78 | 1.59 | 1.38 | 1.14 | 0.924 | | (deaths) Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths) | | 1.38 | 1.24 | 1.1 | 0.962 | 0.831 | 0.708 | | Premature deaths from air pollution - Industrial Processes - Coal Mining (deaths) | | 2.74 | 1.72 | 1.71 | 1.69 | 1.69 | 1.62 | | Premature deaths from air pollution - Industrial Processes - Oil & Gas Production (deaths) | | 93.8 | 85.1 | 74.1 | 64.9 | 57.4 | 39.9 | | Monetary damages from air pollution -
Fuel Comb - Electric Generation - Coal
(million \$2019) | | 556 | 0.465 | 0.445 | 0.372 | 0.247 | 0.01 | | Monetary damages from air pollution -
Fuel Comb - Electric Generation - Natural
Gas (million \$2019) | | 201 | 92.7 | 41.3 | 19.8 | 7.64 | 5.99 | | Monetary damages from air pollution -
Mobile - On-Road (million \$2019) | | 1,321 | 1,328 | 1,290 | 1,161 | 924 | 634 | | Monetary damages from air pollution -
Gas Stations (million \$2019) | | 103 | 103 | 99.3 | 88.7 | 70.4 | 48.8 | | Monetary damages from air pollution -
Fuel Comb - Residential - Natural Gas
(million \$2019) | | 199 | 180 | 157 | 128 | 93.6 | 60.3 | | Monetary damages from air pollution -
Fuel Comb - Residential - Oil (million
\$2019) | | 4.93 | 4.7 | 4.47 | 4 | 3.22 | 2.4 | | Monetary damages from air pollution -
Fuel Comb - Residential - Other (million
\$2019) | | 36.3 | 36.9 | 36.7 | 33.5 | 26.4 | 18.4 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Coal
(million \$2019) | | 51.7 | 49.5 | 47.1 | 44.5 | 41.8 | 39 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Natural
Gas (million \$2019) | | 144 | 138 | 129 | 112 | 89.8 | 66.3 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Oil
(million \$2019) | | 17.5 | 15.7 | 14.1 | 12.2 | 10.1 | 8.18 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Other
(million \$2019) | | 12.2 | 11 | 9.72 | 8.52 | 7.36 | 6.27 | | Monetary damages from air pollution -
Industrial Processes - Coal Mining
(million \$2019) | | 24.2 | 15.2 | 15.1 | 14.9 | 14.9 | 14.3 | | Monetary damages from air pollution -
Industrial Processes - Oil & Gas
Production (million \$2019) | | 833 | 756 | 658 | 576 | 509 | 355 | Table 18: E- scenario - IMPACTS - Jobs | Table 18: E- scenario - IMPACTS - Jobs | | | | | | | | |--|------|--------|--------|--------|--------|---------|--------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | By economic sector - Agriculture (jobs) | | 442 | 456 | 434 | 475 | 411 | 742 | | By economic sector - Construction (jobs) | | 15,446 | 17,340 | 20,900 | 27,638 | 27,436 | 28,355 | | By economic sector - Manufacturing (jobs) | | 3,177 | 3,662 | 4,109 | 4,855 | 5,647 | 6,355 | | By economic sector - Mining (jobs) | | 2,243 | 1,665 | 1,293 | 984 | 751 | 515 | | By economic sector - Other (jobs) | | 2,313 | 2,613 | 3,701 | 5,295 | 4,715 | 4,801 | | By economic sector - Pipeline (jobs) | | 407 | 616 | 302 | 280 | 279 | 359 | | By economic sector - Professional (jobs) | | 6,578 | 7,120 | 9,303 | 13,059 | 13,678 | 15,345 | | By economic sector - Trade (jobs) | | 4,959 | 5,141 | 6,485 | 8,741 | 8,775 | 9,525 | | By economic sector - Utilities (jobs) | | 8,781 | 11,261 | 13,206 | 18,628 | 23,638 | 26,061 | | By resource sector - Biomass (jobs) | | 1,043 | 1,047 | 980 | 1,569 | 1,751 | 3,132 | | By resource sector - CO2 (jobs) | | 14.9 | 2,248 | 159 | 343 | 751 | 1,904 | | By resource sector - Coal (jobs) | | 1,495 | 345 | 151 | 132 | 119 | 105 | | By resource sector - Grid (jobs) | | 12,259 | 17,524 | 23,993 | 35,092 | 46,771 | 50,566 | | By resource sector - Natural Gas (jobs) | | 3,513 | 2,226 | 1,859 | 1,999 | 1,224 | 1,177 | | By resource sector - Nuclear (jobs) | | 624 | 614 | 604 | 350 | 0 | 0 | | By resource sector - Oil (jobs) | | 5,479 | 4,662 | 3,974 | 3,256 | 2,545 | 1,708 | | By resource sector - Solar (jobs) | | 16,442 | 16,985 | 22,657 | 30,205 | 22,719 | 20,505 | | By resource sector - Wind (jobs) | | 3,477 | 4,225 | 5,355 | 7,008 | 9,450 | 12,960 | | By education level - All sectors - High | | 19,122 | 21,553 | 25,679 | 34,131 | 36,181 | 38,831 | | school diploma or less (jobs) | | | | | | | | | By education level - All sectors - | | 13,921 | 15,853 | 19,056 | 25,715 | 27,606 | 29,754 | | Associates degree or some college (jobs) | | | | 11.110 | | 11.11.0 | | | By education level - All sectors - | | 8,784 | 9,697 | 11,612 | 15,525 | 16,648 | 18,108 | | Bachelors degree (jobs) | | 0.100 | 0./10 | 0.007 | 0.07/ | / 0/0 | / /70 | | By education level - All sectors - Masters | | 2,182 | 2,412 | 2,937 | 3,974 | 4,268 | 4,673 | | or professional degree (jobs) By education level - All sectors - Doctoral | | 338 | 361 | 450 | 610 | /00 | 691 | | degree (jobs) | | 336 | 301 | 450 | 610 | 628 | 091 | | Related work experience - All sectors - | | 6,461 | 7,311 | 8,746 | 11,734 | 12,529 | 13,516 | | None (jobs) | | 0,401 | 1,511 | 0,140 | 11,104 | 12,027 | 10,010 | | Related work experience - All sectors - Up | | 9,169 | 10,257 | 12,320 | 16,365 | 17,171 | 18,475 | | to 1 year (jobs) | | 7,107 | 10,201 | 12,020 | 10,000 | , | .0, 0 | | Related work experience - All sectors - 1 | | 15,829 | 17,787 | 21,313 | 28,591 | 30,635 | 33,075 | | to 4 years (jobs) | | | | | | | • | | Related work experience - All sectors - 4 | | 10,261 | 11,562 | 13,823 | 18,552 | 19,909 | 21,495 | | to 10 years (jobs) | | | | | | | | | Related work experience - All sectors - | | 2,627 | 2,958 | 3,531 | 4,714 | 5,086 | 5,496 | | Over 10 years (jobs) | | | | | | | | | On-the-Job Training - All sectors - None | | 2,495 | 2,757 | 3,320 | 4,421 | 4,601 | 4,940 | | (jobs) | | | | | | | | | On-the-Job Training - All sectors - Up to 1 | | 28,823 | 32,282 | 38,670 | 51,651 | 55,159 | 59,650 | | year (jobs) | | 0.007 | 10 (05 | 10.77/ | 47407 | 10.777 | 40.070 | | On-the-Job Training - All sectors - 1 to 4 | | 9,387 | 10,685 | 12,776 | 17,187 | 18,464 | 19,862 | | years (jobs) | | 0.001 | 0.775 | / 200 | E 000 | 7 001 | / 700 | | On-the-Job Training - All sectors - 4 to 10 | | 3,201 | 3,665 | 4,390 | 5,939 | 6,331 | 6,782 | | years (jobs) On-the-Job Training - All sectors - Over 10 | | 440 | 488 | 577 | 756 | 774 | 823 | | years (jobs) | | 440 | 400 | 511 | 136 | 774 | 023 | | On-Site or In-Plant Training - All sectors - | | 7,217 | 8,059 | 9,685 | 12,966 | 13,683 | 14,778 | | None (jobs) | | 1,211 | 0,007 | 7,000 | 12,700 | 10,000 | 14,110 | | On-Site or In-Plant Training - All sectors - | | 26,238 | 29,425 | 35,237 | 47,068 | 50,300 | 54,342 | | Up to 1 year (jobs) | | _5,255 | , 120 | 55,251 | ,000 | 55,555 | 0.,012 | | On-Site or In-Plant Training - All sectors - | | 7,283 | 8,276 | 9,898 | 13,295 | 14,265 | 15,337 | | 1 to 4 years (jobs) | | , | , - | | | , | , | | On-Site or In-Plant Training - All sectors - | | 3,223 | 3,671 | 4,380 | 5,903 | 6,298 | 6,754 | | 4 to 10 years (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 386 | 445 | 534 | 722 | 783 | 846 | | Over 10 years (jobs) | | | | | | | | | Wage income - All (million \$2019) | | 2,402 | 2,734 | 3,304 | 4,480 | 4,882 | 5,345 | Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Final energy use - Transportation (PJ) | 670 | 628 | 574 | 531 | 498 | 459 | 413 | | Final energy use - Residential (PJ) | 241 | 228 | 218 | 206 | 189 | 170 | 154 | | Final energy use - Commercial (PJ) | 182 | 179 | 174 | 169 | 162 | 155 | 149 | | Final energy use - Industry (PJ) | 241 | 250 | 272 | 277 | 295 | 331 | 335 | ## Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Electricity distribution capital invested - | | 3.2 | 3.23 | 3.9 | 4.01 | 5.79 | 6.1 | | Cumulative 5-yr (billion \$2018) | | | | | | | | ## Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Vehicle stocks - LDV – EV (1000 units) | 23.3 | 155 | 287 | 899 | 1,510 | 2,863 | 4,216 | | Vehicle stocks - LDV – All others (1000 units) | 5,511 | 5,511 | 5,511 | 5,228 | 4,944 | 3,810 | 2,676 | | Light-duty vehicle capital costs vs. REF -
Cumulative 5-yr (million \$2018) | | 0 | 171 | 359 | 1,211 | 3,810 | 5,551 | | Public EV charging plugs - DC Fast (1000 units) | 0.178 | | 0.611 | | 3.21 | | 8.98 | | Public EV charging plugs - L2 (1000 units) | 1.67 | | 14.7 | | 77.3 | | 216 | #### Table 22: E- scenario - PILLAR 1: Efficiency/Electrification - Residential | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Sales of space heating units - Electric | 7.5 | 13 | 18.7 | 35.2 | 61.1 | 79 | 85.2 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 19.7 | 24.8 | 23.3 | 19.2 | 12.8 | 8.51 | 7.04 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas (%) | 63.5 | 47.3 | 43.7 | 33.5 | 17.6 | 6.67 | 2.55 | | Sales of space heating units - Fossil (%) | 9.34 | 14.9 | 14.4 | 12.2 | 8.46 | 5.78 | 5.24 | | Sales of water heating units - Electric | 0 | 1.51 | 5.81 | 18.2 | 37.5 | 50.4
 55 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 42.5 | 57.5 | 56.3 | 52.9 | 47.8 | 44.7 | 43.6 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 57.4 | 40.9 | 37.8 | 28.9 | 14.7 | 4.93 | 1.34 | | (%) | | | | | | | | | Sales of water heating units - Other (%) | 0.034 | 0.035 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | | Sales of cooking units - Electric | 76.4 | 77 | 79.2 | 84.9 | 92.8 | 97.7 | 99.4 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 23.6 | 23 | 20.8 | 15.1 | 7.21 | 2.33 | 0.626 | | Residential HVAC investment in 2020s vs. | | 5.81 | 7.68 | | | | | | REF - Cumulative 5-yr (billion \$2018) | | | | | | | | ## Table 23: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|-------|-------|-------| | Sales of space heating units - Electric | 4.52 | 15.9 | 21.2 | 36.6 | 61.3 | 79.5 | 86.8 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 8.06 | 5.57 | 5.72 | 6.25 | 7.38 | 8.69 | 9.45 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas Furnace | 87.4 | 76.5 | 71.1 | 55.7 | 30.6 | 11.6 | 3.64 | | (%) | | | | | | | | | Sales of space heating units - Fossil (%) | 0 | 2.02 | 1.9 | 1.42 | 0.689 | 0.224 | 0.059 | | Sales of water heating units - Electric | 1.19 | 2.53 | 7.36 | 21.3 | 43.1 | 57.7 | 63 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 10.1 | 7.76 | 9.75 | 15.5 | 24.6 | 31 | 33.4 | | Resistance (%) | | | | | | | | Table 23: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|--------|--------|-------|-------|------|-------| | Sales of water heating units - Gas Furnace (%) | 87.7 | 88.7 | 81.9 | 62.3 | 31.6 | 10.6 | 2.88 | | Sales of water heating units - Other (%) | 0.996 | 0.987 | 0.962 | 0.892 | 0.786 | 0.72 | 0.695 | | - , | | | | | | | | | Sales of cooking units - Electric | 44.8 | 49.3 | 53.1 | 63 | 76.9 | 85.5 | 88.5 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 55.2 | 50.7 | 46.9 | 37 | 23.1 | 14.5 | 11.5 | | Commercial HVAC investment in 2020s - | | 16,266 | 17,675 | | | | | | Cumulative 5-yr (million \$2018) | | | | | | | | ## Table 24: E- scenario - PILLAR 2: Clean Electricity - Generating capacity | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--------------------------------------|-------|-------|-------|-------|------|-------|-------| | Installed thermal - Coal (MW) | 7,000 | 1,299 | 0 | 0 | 0 | 0 | 0 | | Installed thermal - Natural gas (MW) | 6,692 | 4,262 | 4,134 | 3,511 | 647 | 2,254 | 3,204 | | Installed thermal - Nuclear (MW) | 1,236 | 1,236 | 1,236 | 1,236 | 0 | 0 | 0 | ## Table 25: E- scenario - PILLAR 6: Land sinks - Forests | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - Low - Accelerate | | | | | | | -82 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Avoid | | | | | | | -379 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Extend | | | | | | | -2,973 | | rotation length (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Improve | | | | | | | -77 | | plantations (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -1,071 | | retention of HWP (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -787 | | trees outside forests (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -5,328 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -1,597 | | pasture (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Low - Restore | | | | | | | -1,244 | | productivity (1000 tCO2e/y) | | | | | | | · | | Carbon sink potential - Low - All (not | | | | | | | -13,537 | | counting overlap) (1000 tCO2e/y) | | | | | | | • | | Carbon sink potential - Mid - Accelerate | | | | | | | -123 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Avoid | | | | | | | -1,326 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Extend | | | | | | | -5,357 | | rotation length (1000 tC02e/y) | | | | | | | • | | Carbon sink potential - Mid - Improve | | | | | | | -113 | | plantations (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Mid - Increase | | | | | | | -2,141 | | retention of HWP (1000 tCO2e/y) | | | | | | | _, | | Carbon sink potential - Mid - Increase | | | | | | | -1,517 | | trees outside forests (1000 tC02e/y) | | | | | | | ,- | | Carbon sink potential - Mid - Reforest | | | | | | | -7,992 | | cropland (1000 tCO2e/y) | | | | | | | ., = | | Carbon sink potential - Mid - Reforest | | | | | | | -11,338 | | pasture (1000 tCO2e/y) | | | | | | | ,555 | | Carbon sink potential - Mid - Restore | | | | | | | -2,467 | | productivity (1000 tCO2e/y) | | | | | | | 2, .01 | | Carbon sink potential - Mid - All (not | | | | | | | -32,374 | | counting overlap) (1000 tC02e/y) | | | | | | | 02,014 | Table 25: E- scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|----------| | Carbon sink potential - High - Accelerate | | | | | | | -164 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Avoid | | | | | | | -2,274 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Extend | | | | | | | -7,741 | | rotation length (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Improve | | | | | | | -151 | | plantations (1000 tCO2e/y) | | | | | | | 0.010 | | Carbon sink potential - High - Increase | | | | | | | -3,212 | | retention of HWP (1000 tCO2e/y) | | | | | | | 0.047 | | Carbon sink potential - High - Increase | | | | | | | -2,247 | | trees outside forests (1000 tC02e/y) | | | | | | | 10 / E / | | Carbon sink potential - High - Reforest cropland (1000 tCO2e/y) | | | | | | | -10,656 | | Carbon sink potential - High - Reforest | | | | | | | -21,079 | | pasture (1000 tC02e/y) | | | | | | | -21,019 | | Carbon sink potential - High - All (not | | | + | | | | -51,213 | | counting overlap) (1000 tCO2e/y) | | | | | | | 01,210 | | Carbon sink potential - High - Restore | | | | | | | -3,690 | | productivity (1000 tCO2e/y) | | | | | | | 0,070 | | Land impacted for carbon sink potential - | | | | | | | 13.4 | | Low - Accelerate regeneration (1000 | | | | | | | 10. 1 | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 289 | | Low - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,512 | | Low - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 27.9 | | Low - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Low - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 112 | | Low - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 352 | | Low - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 104 | | Low - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 740 | | Low - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | 0.454 | | Land impacted for carbon sink potential - | | | | | | | 3,151 | | Low - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | 001 | | Land impacted for carbon sink potential - | | | | | | | 20.1 | | Mid - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | 000 | | Land impacted for carbon sink potential - | | | | | | | 298 | | Mid - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | - | 0.700 | | Land impacted for carbon sink potential - | | | | | | | 2,730 | | Mid - Extend rotation length (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 41.9 | | Mid - Improve plantations (1000 hectares) | | | | | | | 41.7 | | ma minipi ove plantations (1000 lieutal'es) | | | | | | | | Table 25: E- scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|-------| | Land impacted for carbon sink potential - | | | | | | | 0 | | Mid - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 163 | | Mid - Increase trees outside forests (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 528 | | Mid - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 751 | | Mid - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,490 | | Mid - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 6,022 | | Mid - Total impacted (over 30 years) (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 26.8 | | High -
Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 308 | | High - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,947 | | High - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 55.7 | | High - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | High - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 214 | | High - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 705 | | High - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 599 | | High - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,223 | | High - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 7,077 | | High - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | Table 26: E- scenario - PILLAR 6: Land sinks - Agriculture | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--------------------------------------|------|------|------|------|------|------|--------| | Carbon sink potential - Moderate | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -7,068 | | deployment - Cropland measures (1000 | | | | | | | | | tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -157 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -7,225 | | deployment - Total (1000 tCO2e/y) | | | | | | | | Table 26: E- scenario - PILLAR 6: Land sinks - Agriculture (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - Aggressive | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -13,495 | | deployment - Cropland measures (1000 | | | | | | | | | tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -313 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -13,808 | | deployment - Total (1000 tC02e/y) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 3,016 | | deployment - Cropland measures (1000 | | | | | | | • | | hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 285 | | deployment - Permanent conservation | | | | | | | | | cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 3,301 | | deployment - Total (1000 hectares) | | | | | | | -, | | Land impacted for carbon sink - | | | | | | | 0 | | Aggressive deployment - Corn-ethanol to | | | | | | | · | | energy grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | + | 5,748 | | Aggressive deployment - Cropland | | | | | | | ٥,٥ | | measures (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 570 | | Aggressive deployment - Permanent | | | | | | | 0.0 | | conservation cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 6,318 | | Aggressive deployment - Total (1000 | | | | | | | 0,010 | | hectares) | | | | | | | | Table 27: E+RE+ scenario - IMPACTS - Health | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|-------|-------|-------|-------|-------|-------| | Premature deaths from air pollution -
Fuel Comb - Electric Generation - Coal | | 62.8 | 0.052 | 0.05 | 0.042 | 0.028 | 0.001 | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 21.6 | 11.3 | 4.17 | 2.81 | 1.05 | 0.61 | | Fuel Comb - Electric Generation - Natural
Gas (deaths) | | | | | | | | | Premature deaths from air pollution -
Mobile - On-Road (deaths) | | 146 | 136 | 103 | 59.5 | 27.6 | 11.6 | | Premature deaths from air pollution - Gas
Stations (deaths) | | 11.4 | 10.5 | 7.88 | 4.68 | 2.33 | 1.16 | | Premature deaths from air pollution -
Fuel Comb - Residential - Natural Gas
(deaths) | | 22.2 | 17.8 | 11.6 | 6.23 | 2.82 | 1.1 | | Premature deaths from air pollution -
Fuel Comb - Residential - Oil (deaths) | | 0.545 | 0.448 | 0.315 | 0.193 | 0.096 | 0.045 | | Premature deaths from air pollution -
Fuel Comb - Residential - Other (deaths) | | 4.05 | 3.67 | 2.81 | 1.81 | 0.904 | 0.365 | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional - Coal
(deaths) | | 5.84 | 5.59 | 5.32 | 5.02 | 4.72 | 4.41 | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional - Natural
Gas (deaths) | | 16.2 | 13.9 | 10.2 | 6.49 | 3.84 | 2.2 | Table 27: E+RE+ scenario - IMPACTS - Health (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|-------|-------|-------|-------|-------|-------| | Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths) | | 1.97 | 1.63 | 1.28 | 0.946 | 0.657 | 0.418 | | Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths) | | 1.38 | 1.15 | 0.937 | 0.728 | 0.531 | 0.348 | | Premature deaths from air pollution -
Industrial Processes - Coal Mining
(deaths) | | 2.98 | 1.72 | 1.7 | 1.67 | 1.68 | 1.58 | | Premature deaths from air pollution -
Industrial Processes - Oil & Gas
Production (deaths) | | 92.5 | 87 | 75.2 | 54 | 33.1 | 5.02 | | Monetary damages from air pollution -
Fuel Comb - Electric Generation - Coal
(million \$2019) | | 556 | 0.465 | 0.445 | 0.372 | 0.247 | 0.01 | | Monetary damages from air pollution -
Fuel Comb - Electric Generation - Natural
Gas (million \$2019) | | 192 | 100 | 36.9 | 24.9 | 9.27 | 5.4 | | Monetary damages from air pollution -
Mobile - On-Road (million \$2019) | | 1,300 | 1,208 | 916 | 529 | 246 | 103 | | Monetary damages from air pollution -
Gas Stations (million \$2019) | | 101 | 92.6 | 69.7 | 41.5 | 20.6 | 10.3 | | Monetary damages from air pollution -
Fuel Comb - Residential - Natural Gas
(million \$2019) | | 197 | 158 | 103 | 55.2 | 25 | 9.74 | | Monetary damages from air pollution -
Fuel Comb - Residential - Oil (million
\$2019) | | 4.83 | 3.97 | 2.79 | 1.71 | 0.849 | 0.394 | | Monetary damages from air pollution -
Fuel Comb - Residential - Other (million
\$2019) | | 35.9 | 32.5 | 24.9 | 16 | 8.01 | 3.23 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Coal
(million \$2019) | | 51.7 | 49.5 | 47.1 | 44.5 | 41.8 | 39 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Natural
Gas (million \$2019) | | 144 | 123 | 90.6 | 57.5 | 34 | 19.5 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Oil
(million \$2019) | | 17.5 | 14.4 | 11.3 | 8.38 | 5.81 | 3.7 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Other
(million \$2019) | | 12.2 | 10.2 | 8.29 | 6.44 | 4.7 | 3.08 | | Monetary damages from air pollution -
Industrial Processes - Coal Mining
(million \$2019) | | 26.3 | 15.2 | 15 | 14.7 | 14.8 | 14 | | Monetary damages from air pollution -
Industrial Processes - Oil & Gas
Production (million \$2019) | | 821 | 773 | 668 | 480 | 294 | 44.6 | Table 28: E+RE+ scenario - IMPACTS - Jobs | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|--------|--------|--------|--------|--------|--------| | By economic sector - Agriculture (jobs) | | 441 | 446 | 430 | 355 | 264 | 745 | | By economic sector - Construction (jobs) | | 13,828 | 18,696 | 28,091 | 33,430 | 58,740 | 52,620 | | By economic sector - Manufacturing | | 3,195 | 3,904 | 5,511 | 6,401 | 8,744 | 9,497 | | (jobs) | | | | | | | | | By economic sector - Mining (jobs) | | 2,202 | 1,533 | 978 | 566 | 288 | 44.1 | | By economic sector - Other (jobs) | | 1,997 | 3,091 | 4,987 | 6,102 | 12,901 | 11,224 | | By economic sector - Pipeline (jobs) | | 396 | 335 | 243 | 162 | 94.2 | 25 | | By economic sector - Professional (jobs) | | 6,024 | 7,936 | 12,504 | 15,809 | 28,121 | 27,643 | Table 28: E+RE+ scenario - IMPACTS - Jobs (continued) | Table 20. ETRET BEETIGHTO THIT ACTO BODG (COIT | • | | | | | | |--|----------|--------|--------|--------|---------|-----------------------| | | 020 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | By economic sector - Trade (jobs) | 4,586 | 5,627 | 8,283 | 10,157 | 18,886 | 18,018 | | By economic sector - Utilities (jobs) | 8,494 | 10,886 | 18,461 | 25,291 | 39,654 | 41,537 | | By resource sector - Biomass (jobs) | 1,040 | 1,021 | 960 | 945 | 997 | 3,349 | | By resource sector - CO2 (jobs) | 0 | 0 | 0 | 0 | 0 | 0 | | By resource sector - Coal (jobs) | 1,495 | 345 | 151 | 132 | 119 | 104 | | By resource sector - Grid (jobs) | 11,811 | 18,790 | 34,856 | 48,618 | 78,648 | 83,166 | | By resource sector - Natural Gas (jobs) | 3,426 | 2,258 | 1,689 |
1,907 | 1,442 | 1,520 | | By resource sector - Nuclear (jobs) | 624 | 614 | 604 | 595 | 345 | 0 | | By resource sector - Oil (jobs) | 5,420 | 4,307 | 3,062 | 1,951 | 1,060 | 1.61 | | By resource sector - Solar (jobs) | 13,899 | 20,652 | 30,438 | 33,691 | 71,377 | 55,179 | | By resource sector - Wind (jobs) | 3,448 | 4,468 | 7,728 | 10,436 | 13,702 | 18,032 | | By education level - All sectors - High | 17,713 | 22,675 | 34,120 | 41,804 | 71,179 | 68,063 | | school diploma or less (jobs) | | | | | | | | By education level - All sectors - | 12,897 | 16,638 | 25,562 | 31,843 | 54,574 | 52,441 | | Associates degree or some college (jobs) | , | , | | | | · | | By education level - All sectors - | 8,209 | 10,195 | 15,321 | 19,021 | 32,300 | 31,440 | | Bachelors degree (jobs) | | -, - | -,- | , - | - , | -, | | By education level - All sectors - Masters | 2,033 | 2,555 | 3,892 | 4,873 | 8,355 | 8,171 | | or professional degree (jobs) | | _,000 | 5,572 | .,0.0 | 3,555 | O ₁ | | By education level - All sectors - Doctoral | 311 | 393 | 593 | 732 | 1,283 | 1,238 | | degree (jobs) | | 0,0 | 0,0 | .02 | 1,200 | 1,200 | | Related work experience - All sectors - | 5,995 | 7,666 | 11,641 | 14,408 | 24,655 | 23,722 | | None (jobs) | 0,770 | 1,000 | 11,041 | 14,400 | 24,000 | 20,122 | | Related work experience - All sectors - Up | 8,482 | 10,887 | 16,363 | 19,976 | 34,213 | 32,683 | | to 1 year (jobs) | 0,402 | 10,001 | 10,000 | 12,210 | 04,210 | 02,000 | | Related work experience - All sectors - 1 | 14,710 | 18,683 | 28,343 | 35,158 | 59,991 | 57,851 | | to 4 years (jobs) | 14,110 | 10,000 | 20,040 | 33,130 | 37,771 | 31,031 | | Related work experience - All sectors - 4 | 9,529 | 12,119 | 18,436 | 22,896 | 38,976 | 37,556 | | to 10 years (jobs) | 7,527 | 12,117 | 10,430 | 22,070 | 30,710 | 31,330 | | Related work experience - All sectors - | 2,448 | 3,102 | 4,704 | 5,836 | 9,856 | 9,539 | | Over 10 years (jobs) | 2,440 | 3,102 | 4,104 | 3,030 | 2,000 | 7,007 | | On-the-Job Training - All sectors - None | 2,308 | 2,930 | 4,388 | 5,365 | 9,288 | 8,831 | | (jobs) | 2,306 | 2,730 | 4,366 | 5,365 | 7,200 | 0,031 | | On-the-Job Training - All sectors - Up to 1 | 26,817 | 33,993 | 51,305 | 63,349 | 107,868 | 104,208 | | year (jobs) | 20,011 | 33,773 | 31,303 | 03,349 | 101,000 | 104,206 | | On-the-Job Training - All sectors - 1 to 4 | 8,693 | 11,182 | 17,122 | 21,292 | 36,320 | 34,837 | | = | 0,073 | 11,102 | 11,122 | 21,292 | 30,320 | 34,031 | | years (jobs) On-the-Job Training - All sectors - 4 to 10 | 2,942 | 3,833 | 5,907 | 7,345 | 10.77.0 | 12,007 | | | 2,942 | 3,833 | 5,907 | 7,345 | 12,640 | 12,007 | | years (jobs) | / 05 | F17 | 7/7 | 000 | 1 575 | 1 / / 0 | | On-the-Job Training - All sectors - Over 10 | 405 | 517 | 767 | 922 | 1,575 | 1,469 | | years (jobs) | (() (| 0.500 | 10.001 | 45.07/ | 07.050 | 0 (100 | | On-Site or In-Plant Training - All sectors - | 6,684 | 8,522 | 12,881 | 15,874 | 27,252 | 26,120 | | None (jobs) | | | | | | | | On-Site or In-Plant Training - All sectors - | 24,406 | 30,965 | 46,772 | 57,770 | 98,368 | 94,960 | | Up to 1 year (jobs) | | | | | | | | On-Site or In-Plant Training - All sectors - | 6,747 | 8,670 | 13,245 | 16,443 | 28,054 | 26,906 | | 1 to 4 years (jobs) | | | | | | | | On-Site or In-Plant Training - All sectors - | 2,969 | 3,833 | 5,871 | 7,288 | 12,487 | 11,889 | | 4 to 10 years (jobs) | | | | | | | | On-Site or In-Plant Training - All sectors - | 357 | 464 | 719 | 899 | 1,530 | 1,477 | | Over 10 years (jobs) | | | | | | | | Wage income - All (million \$2019) | 2,233 | 2,862 | 4,395 | 5,524 | 9,493 | 9,295 | | | | | | | | | Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Final energy use - Transportation (PJ) | 669 | 623 | 550 | 461 | 380 | 331 | 311 | | Final energy use - Residential (PJ) | 241 | 227 | 206 | 178 | 155 | 141 | 134 | | Final energy use - Commercial (PJ) | 182 | 178 | 169 | 158 | 147 | 141 | 138 | | Final energy use - Industry (PJ) | 241 | 249 | 271 | 274 | 290 | 326 | 330 | # Table 30: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Electricity distribution capital invested - | | 3.82 | 3.92 | 6.23 | 6.6 | 6.19 | 6.47 | | Cumulative 5-yr (billion \$2018) | | | | | | | | ## Table 31: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Vehicle stocks - LDV – EV (1000 units) | 30.1 | 479 | 928 | 2,500 | 4,071 | 5,327 | 6,583 | | Vehicle stocks - LDV – All others (1000 units) | 5,489 | 5,226 | 4,964 | 3,618 | 2,271 | 1,285 | 299 | | Light-duty vehicle capital costs vs. REF -
Cumulative 5-yr (million \$2018) | | 1,055 | 2,704 | 4,381 | 6,637 | 7,223 | 6,887 | | Public EV charging plugs - DC Fast (1000 units) | 0.178 | | 1.98 | | 8.67 | | 14 | | Public EV charging plugs - L2 (1000 units) | 1.67 | | 47.5 | | 208 | | 337 | ## Table 32: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Sales of space heating units - Electric | 7.5 | 22.5 | 72.3 | 86.1 | 87.5 | 87.8 | 87.4 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 19.7 | 22.4 | 10 | 6.61 | 6.36 | 6.55 | 6.72 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas (%) | 63.5 | 41.4 | 10.2 | 1.69 | 1.08 | 1.04 | 1.02 | | Sales of space heating units - Fossil (%) | 9.34 | 13.6 | 7.39 | 5.58 | 5.03 | 4.63 | 4.86 | | Sales of water heating units - Electric | 0 | 8.7 | 46.5 | 56.1 | 56.7 | 56.7 | 56.7 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 42.5 | 55.5 | 45.3 | 43.3 | 43.3 | 43.3 | 43.3 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 57.4 | 35.7 | 8.23 | 0.581 | 0.019 | 0 | 0 | | (%) | | | | | | | | | Sales of water heating units - Other (%) | 0.034 | 0.035 | 0.036 | 0.035 | 0.035 | 0.036 | 0.036 | | Sales of cooking units - Electric | 76.5 | 81.5 | 96.8 | 99.8 | 100 | 100 | 100 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 23.5 | 18.5 | 3.16 | 0.159 | 0 | 0 | 0 | | Residential HVAC investment in 2020s vs. | | 5.85 | 7.79 | | | | | | REF - Cumulative 5-yr (billion \$2018) | | | | | | | | ## Table 33: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|-------|--------|--------|-------|-------|-------|-------| | Sales of space heating units - Electric
Heat Pump (%) | 4.52 | 24.4 | 70.6 | 87.7 | 89.7 | 89.7 | 89.7 | | Sales of space heating units - Electric
Resistance (%) | 8.06 | 5.73 | 7.1 | 9.32 | 9.79 | 9.8 | 9.8 | | Sales of space heating units - Gas Furnace (%) | 87.4 | 68.1 | 22 | 2.94 | 0.553 | 0.458 | 0.459 | | Sales of space heating units - Fossil (%) | 0 | 1.75 | 0.337 | 0.014 | 0 | 0 | 0 | | Sales of water heating units - Electric
Heat Pump (%) | 1.19 | 10.6 | 53.1 | 64.2 | 65 | 65 | 65 | | Sales of water heating units - Electric
Resistance (%) | 10.1 | 11 | 28.4 | 33.8 | 34.3 | 34.3 | 34.3 | | Sales of water heating units - Gas Furnace (%) | 87.7 | 77.5 | 17.8 | 1.26 | 0.041 | 0 | 0 | | Sales of water heating units - Other (%) | 0.996 | 0.947 | 0.735 | 0.688 | 0.685 | 0.688 | 0.687 | | Sales of cooking units - Electric
Resistance (%) | 44.8 | 57.1 | 84 | 89.3 | 89.6 | 89.6 | 89.6 | | Sales of cooking units - Gas (%) | 55.2 | 42.9 | 16 | 10.7 | 10.4 | 10.4 | 10.4 | | Commercial HVAC investment in 2020s -
Cumulative 5-yr (million \$2018) | | 16,269 | 17,611 | | | | | Table 34: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|-------|--------|--------|--------|---------|---------|---------| | Installed thermal - Coal (MW) | 7,000 | 1,299 | 0 | 0 | 0 | 0 | 0 | | Installed thermal - Natural gas (MW) | 6,692 | 4,262 | 4,134 | 3,844 | 2,056 | 5,529 | 8,394 | | Installed thermal - Nuclear (MW) | 1,236 | 1,236 | 1,236 | 1,236 | 1,236 | 0 | 0 | | Installed renewables - Rooftop PV (MW) | 153 | 269 | 400 | 605 | 898 | 1,277 | 1,767 | | Installed renewables - Solar - Base land | 110 | 8,903 | 20,953 | 40,065 | 57,163 | 102,834 | 132,465 | | use assumptions (MW) | | | | | | | | | Installed renewables - Wind - Base land | 5,327 | 25,030 | 42,116 | 75,250 | 119,064 | 170,086 | 198,707 | | use assumptions (MW) | | | | | | | | | Installed renewables - Solar - | 33.6 | 8,809 | 22,631 | 37,113 | 57,486 | 98,641 | 116,501 | | Constrained land use assumptions (MW) | | | | | | | | | Installed renewables - Wind - Constrained | 5,101 | 27,080 | 51,233 | 93,031 | 97,026 | 99,812 | 231,168 | | land use assumptions (MW) | | | | | | | | | Installed renewables - Offshore Wind - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Constrained land use assumptions (MW) | | | | | | | | | Capital invested - Solar PV - Base (billion | | 11.8 | 14.4 | 21.1 | 17.8 | 44.8 | 27.5 | | \$2018) | | | | | | | | | Capital invested - Wind - Base (billion | | 29 | 22.7 | 41.1 | 51.8 | 57.2 | 30.3 | | \$2018) | | | | | | | | #### Table 35: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|--------|---------|---------|---------|---------|---------|-----------| | Solar - Base
land use assumptions (GWh) | 216 | 16,765 | 39,441 | 75,390 | 107,459 | 193,354 | 249,128 | | Wind - Base land use assumptions (GWh) | 19,737 | 84,539 | 140,172 | 247,311 | 386,254 | 545,010 | 631,310 | | OffshoreWind - Base land use assumptions (GWh) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Solar - Constrained land use assumptions (GWh) | 145 | 33,147 | 85,095 | 139,507 | 215,976 | 370,604 | 437,809 | | Wind - Constrained land use assumptions (GWh) | 35,330 | 177,376 | 330,559 | 588,274 | 614,269 | 631,531 | 1,466,853 | | OffshoreWind - Constrained land use assumptions (GWh) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ## Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - Low - Accelerate | | | | | | | -82 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Avoid | | | | | | | -379 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Extend | | | | | | | -2,973 | | rotation length (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Improve | | | | | | | -77 | | plantations (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -1,071 | | retention of HWP (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -787 | | trees outside forests (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -5,328 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -1,597 | | pasture (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Restore | | | | | | | -1,244 | | productivity (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - All (not | | | | | | | -13,537 | | counting overlap) (1000 tCO2e/y) | | | | | | | | Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued) | Item Conhon sink notantial, Mid. Assolanata | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|--------| | Carbon sink potential - Mid - Accelerate | | | | | | | -12: | | regeneration (1000 tC02e/y) | | | | | | | 1.00 | | Carbon sink potential - Mid - Avoid | | | | | | | -1,32 | | deforestation (1000 tC02e/y) | | | | | | | F 0F | | Carbon sink potential - Mid - Extend | | | | | | | -5,35 | | rotation length (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Mid - Improve | | | | | | | -11 | | plantations (1000 tCO2e/y) | | | | | | | 0.17 | | Carbon sink potential - Mid - Increase | | | | | | | -2,14 | | retention of HWP (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Increase | | | | | | | -1,51 | | trees outside forests (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Mid - Reforest | | | | | | | -7,99 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Reforest | | | | | | | -11,33 | | pasture (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Restore | | | | | | | -2,46 | | productivity (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - All (not | | | | | | | -32,37 | | counting overlap) (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Accelerate | | | | | | | -16 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Avoid | | | | | | | -2,27 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Extend | | | | | | | -7,74 | | rotation length (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Improve | | | | | | | -15 | | plantations (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Increase | | | | | | | -3,21 | | retention of HWP (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Increase | | | | | | | -2,24 | | trees outside forests (1000 tC02e/y) | | | | | | | • | | Carbon sink potential - High - Reforest | | | | | | | -10,65 | | cropland (1000 tCO2e/y) | | | | | | | , | | Carbon sink potential - High - Reforest | | | | | | | -21,07 | | pasture (1000 tC02e/y) | | | | | | | 21,01 | | Carbon sink potential - High - All (not | | | | | | | -51,21 | | counting overlap) (1000 tCO2e/y) | | | | | | | 0., | | Carbon sink potential - High - Restore | | | | | | | -3,69 | | productivity (1000 tCO2e/y) | | | | | | | 0,07 | | Land impacted for carbon sink potential - | | | | | | | 13. | | Low - Accelerate regeneration (1000 | | | | | | | 10. | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 28 | | Low - Avoid deforestation (over 30 years) | | | | | | | 20 | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,51 | | Low - Extend rotation length (1000 | | | | | | | 1,51 | | hectares) | | | | | | | | | , | | | | | | | 07 | | and impacted for carbon sink potential - | | | | | | | 27 | | Low - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | | | Low - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 11 | | Low - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 35 | | Low - Reforest cropland (1000 hectares) | | | | | | | | Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|-------| | Land impacted for carbon sink potential - | | | | | | | 104 | | Low - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 740 | | Low - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,15 | | Low - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 20. | | Mid - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 298 | | Mid - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 2,730 | | Mid - Extend rotation length (1000 | | | | | | | 2,10 | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 41.9 | | Mid - Improve plantations (1000 hectares) | | | | | | | 41. | | | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | (| | Mid - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 16 | | Mid - Increase trees outside forests (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 52 | | Mid - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 75 | | Mid - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,49 | | Mid - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 6,02 | | Mid - Total impacted (over 30 years) (1000 | | | | | | | -, | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 26. | | High - Accelerate regeneration (1000 | | | | | | | 20. | | hectares) | | | | | | | | | • | | | | | | | 30 | | Land impacted for carbon sink potential - | | | | | | | 30 | | High - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,94 | | High - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 55. | | High - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | | | High - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 21 | | High - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 70 | | | | | | | | | 10 | | High - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 59 | | High - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,22 | | High - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | # Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|-------| | Land impacted for carbon sink potential -
High - Total impacted (over 30 years) | | | | | | | 7,077 | | (1000 hectares) | | | | | | | | ## Table 37: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - Moderate | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -7,068 | | deployment - Cropland measures (1000 | | | | | | | | | tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -157 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -7,225 |
 deployment - Total (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -13,495 | | deployment - Cropland measures (1000 | | | | | | | 107 170 | | tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -313 | | deployment - Permanent conservation | | | | | | | 010 | | cover (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -13,808 | | deployment - Total (1000 tC02e/y) | | | | | | | -13,000 | | Land impacted for carbon sink - Moderate | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | U | | grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 3,016 | | | | | | | | | 3,010 | | deployment - Cropland measures (1000 | | | | | | | | | hectares) | | | | | | | 005 | | Land impacted for carbon sink - Moderate | | | | | | | 285 | | deployment - Permanent conservation | | | | | | | | | cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 3,301 | | deployment - Total (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 0 | | Aggressive deployment - Corn-ethanol to | | | | | | | | | energy grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 5,748 | | Aggressive deployment - Cropland | | | | | | | | | measures (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 570 | | Aggressive deployment - Permanent | | | | | | | | | conservation cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 6,318 | | Aggressive deployment - Total (1000 | | | | | | | | | hectares) | | | | | | | | ## Table 38: E+RE- scenario - IMPACTS - Health | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|-------|------|-------|-------|-------| | Premature deaths from air pollution -
Fuel Comb - Electric Generation - Coal
(deaths) | | 62.8 | 0.052 | 0.05 | 0.042 | 0.028 | 0.001 | Table 38: E+RE- scenario - IMPACTS - Health (continued) | Table 38: E+RE- scenario - IMPACTS - Healt | th (continu | edJ | | | | | | |---|-------------|--------|-------|-------|--------|-----------|----------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Premature deaths from air pollution - | | 24.1 | 12.1 | 12.8 | 9.67 | 3.68 | 1.31 | | Fuel Comb - Electric Generation - Natural | | | | | | | | | Gas (deaths) | | 1// | 10.4 | 100 | 50.5 | 07.6 | 11. (| | Premature deaths from air pollution - | | 146 | 136 | 103 | 59.5 | 27.6 | 11.6 | | Mobile - On-Road (deaths) Premature deaths from air pollution - Gas | | 11.4 | 10.5 | 7.88 | /. / 0 | 2.33 | 1.16 | | Stations (deaths) | | 11.4 | 10.5 | 7.00 | 4.68 | 2.33 | 1.10 | | Premature deaths from air pollution - | | 22.2 | 17.8 | 11.6 | 6.23 | 2.82 | 1.1 | | Fuel Comb - Residential - Natural Gas | | 22.2 | 17.0 | 11.0 | 0.23 | 2.62 | 1.1 | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 0.545 | 0.448 | 0.315 | 0.193 | 0.096 | 0.045 | | Fuel Comb - Residential - Oil (deaths) | | 0.0.10 | 0.1.0 | 0.0.0 | 0.170 | 0.070 | 0.0 10 | | Premature deaths from air pollution - | | 4.05 | 3.67 | 2.81 | 1.81 | 0.904 | 0.365 | | Fuel Comb - Residential - Other (deaths) | | | | | | | | | Premature deaths from air pollution - | | 5.84 | 5.59 | 5.32 | 5.02 | 4.72 | 4.41 | | Fuel Comb - Comm/Institutional - Coal | | | | | | | | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 16.2 | 13.9 | 10.2 | 6.49 | 3.84 | 2.2 | | Fuel Comb - Comm/Institutional - Natural | | | | | | | | | Gas (deaths) | | | | | | | | | Premature deaths from air pollution - | | 1.97 | 1.63 | 1.28 | 0.946 | 0.657 | 0.418 | | Fuel Comb - Comm/Institutional - Oil | | | | | | | | | (deaths) | | 100 | | | | 2 - 2 - 2 | | | Premature deaths from air pollution - | | 1.38 | 1.15 | 0.937 | 0.728 | 0.531 | 0.348 | | Fuel Comb - Comm/Institutional - Other | | | | | | | | | (deaths) | | 0.77 | 170 | 17 | 1 / 7 | 1.40 | 1.50 | | Premature deaths from air pollution - | | 2.64 | 1.72 | 1.7 | 1.67 | 1.68 | 1.58 | | Industrial Processes - Coal Mining (deaths) | | | | | | | | | Premature deaths from air pollution - | | 95.1 | 91.8 | 89.6 | 75.3 | 62.5 | 46.2 | | Industrial Processes - Oil & Gas | | 93.1 | 71.0 | 09.0 | 10.0 | 02.5 | 40.2 | | Production (deaths) | | | | | | | | | Monetary damages from air pollution - | + | 556 | 0.465 | 0.445 | 0.372 | 0.247 | 0.01 | | Fuel Comb - Electric Generation - Coal | | | 0.400 | 0.440 | 0.012 | 0.241 | 0.01 | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 213 | 107 | 114 | 85.7 | 32.6 | 11.6 | | Fuel Comb - Electric Generation - Natural | | | | | | | | | Gas (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 1,300 | 1,208 | 916 | 529 | 246 | 103 | | Mobile - On-Road (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 101 | 92.6 | 69.7 | 41.5 | 20.6 | 10.3 | | Gas Stations (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 197 | 158 | 103 | 55.2 | 25 | 9.74 | | Fuel Comb - Residential - Natural Gas | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 4.83 | 3.97 | 2.79 | 1.71 | 0.849 | 0.394 | | Fuel Comb - Residential - Oil (million | | | | | | | | | \$2019) | | 25.0 | 20.5 | 0/ 0 | 1/ | 0.01 | 0.00 | | Monetary damages from air pollution -
Fuel Comb - Residential - Other (million | | 35.9 | 32.5 | 24.9 | 16 | 8.01 | 3.23 | | • | | | | | | | | | \$2019) Monetary damages from air pollution - | | 51.7 | 49.5 | 47.1 | 44.5 | 41.8 | 39 | | Fuel Comb - Comm/Institutional - Coal | | 1.16 | 47.0 | 41.1 | 44.5 | 41.0 | 37 | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 144 | 123 | 90.6 | 57.5 | 34 | 19.5 | | Fuel Comb - Comm/Institutional - Natural | | 144 | 120 | 70.0 | 31.3 | 34 | 17.0 | | Gas (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 17.5 | 14.4 | 11.3 | 8.38 | 5.81 | 3.7 | | Fuel Comb - Comm/Institutional - Oil | | | | | | | . | | (million \$2019) | | | | | | | | | • | | | | | | | | Table 38: E+RE- scenario - IMPACTS - Health (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Monetary damages from air pollution - | | 12.2 | 10.2 | 8.29 | 6.44 | 4.7 | 3.08 | | Fuel Comb - Comm/Institutional - Other | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 23.3 | 15.2 | 15 | 14.7 | 14.9 | 14 | | Industrial Processes - Coal Mining | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 845 | 815 | 796 | 669 | 555 | 410 | | Industrial Processes - Oil & Gas | | | | | | | | | Production (million \$2019) | | | | | | | | #### Table 39: E+RE- scenario - IMPACTS - Jobs | Table 39: E+RE- scenario - IMPACIS - Jobs | | 2225 | 2222 | 2225 | 2010 | 00/5 | 2052 | |---|------|--------|--------|--------|--------|--------|--------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | By economic sector - Agriculture (jobs) | | 442 | 458 | 434 | 426 | 337 | 740 | | By economic sector - Construction (jobs) | | 13,084 | 14,336 | 15,959 | 19,524 | 18,099 | 16,870 | | By economic sector - Manufacturing | | 2,922 | 2,766 | 2,771 | 3,225 | 3,042 | 3,196 | | (jobs) | | | | | | | | | By economic sector - Mining (jobs) | | 2,237 | 1,668 | 1,197 | 830 | 618 | 460 | | By economic sector - Other (jobs) | | 1,840 | 2,110 | 2,805 | 3,630 | 3,364 | 2,854 | | By economic sector - Pipeline (jobs) | | 412 | 666 | 323 | 291 | 283 | 397 | | By economic sector - Professional (jobs) | | 5,738 | 5,713 | 6,855 | 8,925 | 8,621 | 8,664 | | By economic sector - Trade (jobs) | | 4,407 | 4,327 | 4,942 | 6,046 | 5,734 | 5,377 | | By economic sector - Utilities (jobs) | | 8,469 | 9,767 | 10,758 | 14,513 | 14,772 | 15,826 | | By resource sector - Biomass (jobs) | | 1,040 | 1,048 | 982 | 1,274 | 1,331 | 3,145 | | By resource sector - CO2 (jobs) | | 15.1 | 2,547 | 187 | 382 | 841 | 2,148 | | By resource sector - Coal (jobs) | | 1,494 | 587 | 505 | 469 | 440 | 228 | | By resource sector - Grid (jobs) | | 11,690 | 13,416 | 18,369 | 25,774 | 27,725 | 29,162 | | By resource sector - Natural Gas (jobs) | | 3,603 | 3,048 | 2,613 | 3,073 | 1,958 | 1,644 | | By resource sector - Nuclear (jobs) | | 624 | 614 | 604 | 350 | 0 | 0 | | By resource sector - Oil (jobs) | | 5,418 | 4,356 | 3,168 | 2,195 | 1,553 | 1,173 | | By resource sector - Solar (jobs) | | 12,561 | 13,824 | 17,350 | 20,611 | 17,363 | 12,893 | | By resource sector - Wind (jobs) | | 3,107 | 2,372 | 2,266 | 3,284 | 3,661 | 3,990 | | By education level - All sectors - High | | 16,997 | 18,100 | 19,873 | 24,574 | 23,378 | 23,180 | | school diploma or less (jobs) | | -, | -, | , | ,- | -, | -, | | By education level - All sectors - | | 12,383 | 13,273 | 14,677 | 18,501 | 17,762 | 17,516 | | Associates degree or some college (jobs) | | , | -, - | , - | -, | , - | , - | | By education level - All sectors - | | 7,913 | 8,128 | 8,910 | 11,086 | 10,612 | 10,573 | | Bachelors degree (jobs) | | , - | -, - | -, - | , | -,- | -,- | | By education level - All sectors - Masters | | 1,961 | 2,012 | 2,247 | 2,826 | 2,717 | 2,719 | | or professional degree (jobs) | | , | | | • | . | • | | By education level - All sectors - Doctoral | | 298 | 298 | 338 | 424 | 401 | 397 | | degree (jobs) | | | | | | | | | Related work experience - All sectors - | | 5,765 | 6,150 | 6,770 | 8,458 | 8,092 | 8,044 | | None (jobs) | | | | |
• | . | • | | Related work experience - All sectors - Up | | 8,120 | 8,573 | 9,491 | 11,704 | 11,084 | 10,969 | | to 1 year (jobs) | | -, | -, | , | , - | , | -, - | | Related work experience - All sectors - 1 | | 14,149 | 14,921 | 16,429 | 20,537 | 19,682 | 19,516 | | to 4 years (jobs) | | | . | | , | . | • | | Related work experience - All sectors - 4 | | 9,163 | 9,695 | 10,643 | 13,329 | 12,772 | 12,640 | | to 10 years (jobs) | | , | , | , , , | -,- | | , | | Related work experience - All sectors - | | 2,354 | 2,473 | 2,712 | 3,383 | 3,242 | 3,215 | | Over 10 years (jobs) | | _, | _, | _, | 5,555 | -, | -, | | On-the-Job Training - All sectors - None | | 2,212 | 2,307 | 2,552 | 3,148 | 2,977 | 2,914 | | (jobs) | | _, | _, | _, | 7, 10 | _,,,,, | _, | | On-the-Job Training - All sectors - Up to 1 | | 25,772 | 27,054 | 29,797 | 37,049 | 35,405 | 35,246 | | year (jobs) | | , | ,,,,,, | / | , | , | ,0 | | On-the-Job Training - All sectors - 1 to 4 | | 8,354 | 8,961 | 9,856 | 12,387 | 11,880 | 11,715 | | years (jobs) | | -,55 | 3,70. | ,,,,,, | , | ,555 | ,3 | | On-the-Job Training - All sectors - 4 to 10 | | 2,827 | 3,082 | 3,399 | 4,290 | 4,108 | 4,028 | | years (jobs) | | _, | -, | 2,0 | .,_,_ | ., | .,525 | | 1 U) | | | | | | | | | Table 20: | E+RE-scenario | TMDMCTC | Inha I | (nontinued) | |-----------|---------------|-------------|--------|-------------| | าสเมษาวร. | ETRE-SCRIULIU | - IMPAGIO - | บบบธา | COMBINER | | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|--------|--------|--------|--------|--------|--------| | On-the-Job Training - All sectors - Over 10 | | 386 | 407 | 441 | 537 | 501 | 482 | | years (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 6,408 | 6,734 | 7,430 | 9,258 | 8,810 | 8,697 | | None (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 23,460 | 24,671 | 27,172 | 33,789 | 32,298 | 32,120 | | Up to 1 year (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 6,483 | 6,940 | 7,637 | 9,577 | 9,179 | 9,055 | | 1 to 4 years (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 2,856 | 3,093 | 3,393 | 4,265 | 4,080 | 4,011 | | 4 to 10 years (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 344 | 374 | 413 | 522 | 504 | 501 | | Over 10 years (jobs) | | | | | | | | | Wage income - All (million \$2019) | | 2,150 | 2,298 | 2,553 | 3,228 | 3,133 | 3,159 | # Table 40: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Final energy use - Transportation (PJ) | 669 | 623 | 550 | 461 | 380 | 331 | 311 | | Final energy use - Residential (PJ) | 241 | 227 | 206 | 178 | 155 | 141 | 134 | | Final energy use - Commercial (PJ) | 182 | 178 | 169 | 158 | 147 | 141 | 138 | | Final energy use - Industry (PJ) | 241 | 249 | 271 | 274 | 290 | 326 | 330 | ## Table 41: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Electricity distribution capital invested - | | 3.82 | 3.92 | 6.23 | 6.6 | 6.19 | 6.47 | | Cumulative 5-yr (billion \$2018) | | | | | | | | ## Table 42: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Vehicle stocks - LDV – EV (1000 units) | 30.1 | 479 | 928 | 2,500 | 4,071 | 5,327 | 6,583 | | Vehicle stocks - LDV – All others (1000 units) | 5,489 | 5,226 | 4,964 | 3,618 | 2,271 | 1,285 | 299 | | Light-duty vehicle capital costs vs. REF -
Cumulative 5-yr (million \$2018) | | 1,055 | 2,704 | 4,381 | 6,637 | 7,223 | 6,887 | | Public EV charging plugs - DC Fast (1000 units) | 0.178 | | 1.98 | | 8.67 | | 14 | | Public EV charging plugs - L2 (1000 units) | 1.67 | | 47.5 | | 208 | | 337 | ## Table 43: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Sales of space heating units - Electric | 7.5 | 22.5 | 72.3 | 86.1 | 87.5 | 87.8 | 87.4 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 19.7 | 22.4 | 10 | 6.61 | 6.36 | 6.55 | 6.72 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas (%) | 63.5 | 41.4 | 10.2 | 1.69 | 1.08 | 1.04 | 1.02 | | Sales of space heating units - Fossil (%) | 9.34 | 13.6 | 7.39 | 5.58 | 5.03 | 4.63 | 4.86 | | Sales of water heating units - Electric | 0 | 8.7 | 46.5 | 56.1 | 56.7 | 56.7 | 56.7 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 42.5 | 55.5 | 45.3 | 43.3 | 43.3 | 43.3 | 43.3 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 57.4 | 35.7 | 8.23 | 0.581 | 0.019 | 0 | 0 | | (%) | | | | | | | | | Sales of water heating units - Other (%) | 0.034 | 0.035 | 0.036 | 0.035 | 0.035 | 0.036 | 0.036 | | Sales of cooking units - Electric | 76.5 | 81.5 | 96.8 | 99.8 | 100 | 100 | 100 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 23.5 | 18.5 | 3.16 | 0.159 | 0 | 0 | 0 | # Table 43: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Residential HVAC investment in 2020s vs. | | 5.85 | 7.79 | | | | | | REF - Cumulative 5-yr (billion \$2018) | | | | | | | | ## Table 44: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|-------|--------|--------|-------|-------|-------|-------| | Sales of space heating units - Electric
Heat Pump (%) | 4.52 | 24.4 | 70.6 | 87.7 | 89.7 | 89.7 | 89.7 | | Sales of space heating units - Electric
Resistance (%) | 8.06 | 5.73 | 7.1 | 9.32 | 9.79 | 9.8 | 9.8 | | Sales of space heating units - Gas Furnace (%) | 87.4 | 68.1 | 22 | 2.94 | 0.553 | 0.458 | 0.459 | | Sales of space heating units - Fossil (%) | 0 | 1.75 | 0.337 | 0.014 | 0 | 0 | 0 | | Sales of water heating units - Electric
Heat Pump (%) | 1.19 | 10.6 | 53.1 | 64.2 | 65 | 65 | 65 | | Sales of water heating units - Electric
Resistance (%) | 10.1 | 11 | 28.4 | 33.8 | 34.3 | 34.3 | 34.3 | | Sales of water heating units - Gas Furnace (%) | 87.7 | 77.5 | 17.8 | 1.26 | 0.041 | 0 | 0 | | Sales of water heating units - Other (%) | 0.996 | 0.947 | 0.735 | 0.688 | 0.685 | 0.688 | 0.687 | | Sales of cooking units - Electric
Resistance (%) | 44.8 | 57.1 | 84 | 89.3 | 89.6 | 89.6 | 89.6 | | Sales of cooking units - Gas (%) | 55.2 | 42.9 | 16 | 10.7 | 10.4 | 10.4 | 10.4 | | Commercial HVAC investment in 2020s -
Cumulative 5-yr (million \$2018) | | 16,269 | 17,611 | | | | | ## Table 45: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|-------|--------|--------|--------|--------|--------|--------| | Installed thermal - Coal (MW) | 7,000 | 1,299 | 999 | 999 | 999 | 999 | 0 | | Installed thermal - Natural gas (MW) | 6,692 | 4,262 | 5,706 | 6,189 | 4,839 | 4,341 | 4,057 | | Installed thermal - Nuclear (MW) | 1,236 | 1,236 | 1,236 | 1,236 | 0 | 0 | 0 | | Installed renewables - Rooftop PV (MW) | 153 | 269 | 400 | 605 | 898 | 1,277 | 1,767 | | Installed renewables - Solar - Base land | 33.6 | 10,071 | 19,446 | 29,638 | 43,884 | 51,858 | 51,858 | | use assumptions (MW) | | | | | | | | | Installed renewables - Wind - Base land | 4,409 | 21,499 | 26,901 | 26,901 | 36,539 | 49,328 | 70,070 | | use assumptions (MW) | | | | | | | | | Installed renewables - Solar - | 111 | 9,629 | 19,626 | 28,260 | 40,546 | 47,421 | 47,421 | | Constrained land use assumptions (MW) | | | | | | | | | Installed renewables - Wind - Constrained | 4,138 | 23,048 | 29,268 | 29,541 | 43,453 | 65,037 | 90,259 | | land use assumptions (MW) | | | | | | | | | Installed renewables - Offshore Wind - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Constrained land use assumptions (MW) | | | | | | | | | Capital invested - Solar PV - Base (billion | | 13.4 | 11.2 | 11.2 | 14.8 | 7.82 | 0 | | \$2018) | | | | | | | | | Capital invested - Wind - Base (billion | | 25.1 | 7.19 | 0 | 11.4 | 14.3 | 21.8 | | \$2018) | | | | | | | | | Capital invested - Solar PV - Constrained | | 12.7 | 12 | 9.51 | 12.8 | 6.74 | 0 | | (billion \$2018) | | | | | | | | | Capital invested - Wind - Constrained | | 27.8 | 8.28 | 0.338 | 16.4 | 24.2 | 26.7 | | (billion \$2018) | | | | | | | | ## Table 46: E+RE- scenario - PILLAR 2: Clean Electricity - Generation | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|--------|--------|--------|--------|---------|---------|---------| | Solar - Base land use assumptions (GWh) | 72.4 | 18,933 | 36,537 | 55,667 | 82,436 | 97,369 | 97,369 | | Wind - Base land use assumptions (GWh) | 16,617 | 73,100 | 90,582 | 90,582 | 122,043 | 163,615 | 228,918 | | OffshoreWind - Base land use assumptions (GWh) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 46: E+RE- scenario - PILLAR 2: Clean Electricity - Generation (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|--------|--------|--------|--------|---------|---------|---------| | Solar - Constrained land use assumptions (GWh) | 216 | 18,113 | 36,914 | 53,140 | 76,195 | 89,104 | 89,104 | | Wind -
Constrained land use assumptions (GWh) | 14,915 | 76,207 | 96,035 | 97,035 | 141,929 | 209,549 | 285,205 | | OffshoreWind - Constrained land use assumptions (GWh) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | #### Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests | Table 47: E+RE- scenario - PILLAR 6: Land | | | | | | | | |---|------|------|------|------|------|------|---------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Carbon sink potential - Low - Accelerate | | | | | | | -82 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Avoid | | | | | | | -379 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Extend | | | | | | | -2,973 | | rotation length (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Low - Improve | | | | | | | -77 | | plantations (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -1,071 | | retention of HWP (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -787 | | trees outside forests (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -5,328 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -1,597 | | pasture (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Low - Restore | | | | | | | -1,244 | | productivity (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - All (not | | | | | | | -13,537 | | counting overlap) (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Accelerate | | | | | | | -123 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Avoid | | | | | | | -1,326 | | deforestation (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Mid - Extend | | | | | | | -5,357 | | rotation length (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Improve | | | | | | | -113 | | plantations (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Increase | | | | | | | -2,141 | | retention of HWP (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Increase | | | | | | | -1,517 | | trees outside forests (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Mid - Reforest | | | | | | | -7,992 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Reforest | | | | | | | -11,338 | | pasture (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Mid - Restore | | | | | | | -2,467 | | productivity (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - All (not | | | | | | | -32,374 | | counting overlap) (1000 tC02e/y) | | | | | | | 4// | | Carbon sink potential - High - Accelerate | | | | | | | -164 | | regeneration (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Avoid | | | | | | | -2,274 | | deforestation (1000 tC02e/y) | | | | | | | 77/4 | | Carbon sink potential - High - Extend | | | | | | | -7,741 | | rotation length (1000 tCO2e/y) | | | | | | | 454 | | Carbon sink potential - High - Improve | | | | | | | -151 | | plantations (1000 tCO2e/y) | | | | | | | 0.040 | | Carbon sink potential - High - Increase | | | | | | | -3,212 | | retention of HWP (1000 tCO2e/y) | | | | | | | | Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - High - Increase | | | | | | | -2,24 | | trees outside forests (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Reforest | | | | | | | -10,656 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Reforest | | | | | | | -21,079 | | pasture (1000 tC02e/y) | | | | | | | = | | Carbon sink potential - High - All (not | | | | | | | -51,213 | | counting overlap) (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Restore | | | | | | | -3,690 | | productivity (1000 tC02e/y) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 13.4 | | Low - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 289 | | Low - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,512 | | Low - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 27.9 | | Low - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Low - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 112 | | Low - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 352 | | Low - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 104 | | Low - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 740 | | Low - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,151 | | Low - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 20.1 | | Mid - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 298 | | Mid - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 2,730 | | Mid - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 41.9 | | Mid - Improve plantations (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Mid - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 163 | | Mid - Increase trees outside forests (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 528 | | Mid - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 751 | | Mid - Reforest pasture (1000 hectares) | | | | | | | | Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|-------| | Land impacted for carbon sink potential - | | | | | | | 1,490 | | Mid - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 6,022 | | Mid - Total impacted (over 30 years) (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 26.8 | | High - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 308 | | High - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,947 | | High - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 55.7 | | High - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | High - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 214 | | High - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 705 | | High - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 599 | | High - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,223 | | High - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 7,077 | | High - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | | | | | | | - | | Table 48: E+RE- scenario - PILLAR 6: Land sinks - Agriculture | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--------------------------------------|------|------|------|------|------|------|---------| | Carbon sink potential - Moderate | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -7,068 | | deployment - Cropland measures (1000 | | | | | | | | | tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -157 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -7,225 | | deployment - Total (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -13,495 | | deployment - Cropland measures (1000 | | | | | | | | | tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -313 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -13,808 | | deployment - Total (1000 tC02e/y) | | | | | | | | Table 48: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued) | Item | 2020 | 2025 |
2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|-------| | Land impacted for carbon sink - Moderate | | | | | | | 0 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 3,016 | | deployment - Cropland measures (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 285 | | deployment - Permanent conservation | | | | | | | | | cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 3,301 | | deployment - Total (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 0 | | Aggressive deployment - Corn-ethanol to | | | | | | | | | energy grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 5,748 | | Aggressive deployment - Cropland | | | | | | | | | measures (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 570 | | Aggressive deployment - Permanent | | | | | | | | | conservation cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 6,318 | | Aggressive deployment - Total (1000 | | | | | | | | | hectares) | | | | | | | | Table 49: E-B+ scenario - IMPACTS - Health | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|-------|-------|-------|-------|-------|-------| | Premature deaths from air pollution -
Fuel Comb - Electric Generation - Coal
(deaths) | | 62.8 | 0.052 | 0.05 | 0.042 | 0.028 | 0.001 | | Premature deaths from air pollution -
Fuel Comb - Electric Generation - Natural
Gas (deaths) | | 22.7 | 9.88 | 5.78 | 3.74 | 1.65 | 0.849 | | Premature deaths from air pollution -
Mobile - On-Road (deaths) | | 149 | 149 | 145 | 131 | 104 | 71.3 | | Premature deaths from air pollution - Gas
Stations (deaths) | | 11.6 | 11.7 | 11.2 | 10 | 7.95 | 5.51 | | Premature deaths from air pollution -
Fuel Comb - Residential - Natural Gas
(deaths) | | 22.4 | 20.3 | 17.8 | 14.5 | 10.6 | 6.8 | | Premature deaths from air pollution -
Fuel Comb - Residential - Oil (deaths) | | 0.556 | 0.531 | 0.505 | 0.451 | 0.363 | 0.271 | | Premature deaths from air pollution -
Fuel Comb - Residential - Other (deaths) | | 4.1 | 4.16 | 4.14 | 3.78 | 2.98 | 2.08 | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional - Coal
(deaths) | | 5.84 | 5.59 | 5.32 | 5.02 | 4.72 | 4.41 | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional - Natural
Gas (deaths) | | 16.3 | 15.6 | 14.6 | 12.7 | 10.1 | 7.49 | | Premature deaths from air pollution -
Fuel Comb - Comm/Institutional - Oil
(deaths) | | 1.98 | 1.78 | 1.59 | 1.38 | 1.14 | 0.924 | | Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths) | | 1.38 | 1.24 | 1.1 | 0.962 | 0.831 | 0.708 | | Premature deaths from air pollution -
Industrial Processes - Coal Mining
(deaths) | | 2.8 | 1.72 | 1.71 | 1.69 | 1.7 | 1.66 | Table 49: E-B+ scenario - IMPACTS - Health (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|-------|-------|-------|-------|-------|------| | Premature deaths from air pollution -
Industrial Processes - Oil & Gas
Production (deaths) | | 93.8 | 85.1 | 74.1 | 64.9 | 57.4 | 39.9 | | Monetary damages from air pollution -
Fuel Comb - Electric Generation - Coal
(million \$2019) | | 556 | 0.465 | 0.445 | 0.372 | 0.247 | 0.01 | | Monetary damages from air pollution -
Fuel Comb - Electric Generation - Natural
Gas (million \$2019) | | 201 | 87.5 | 51.2 | 33.1 | 14.6 | 7.52 | | Monetary damages from air pollution -
Mobile - On-Road (million \$2019) | | 1,321 | 1,328 | 1,290 | 1,161 | 924 | 634 | | Monetary damages from air pollution -
Gas Stations (million \$2019) | | 103 | 103 | 99.3 | 88.7 | 70.4 | 48.8 | | Monetary damages from air pollution -
Fuel Comb - Residential - Natural Gas
(million \$2019) | | 199 | 180 | 157 | 128 | 93.6 | 60.3 | | Monetary damages from air pollution -
Fuel Comb - Residential - Oil (million
\$2019) | | 4.93 | 4.7 | 4.47 | 4 | 3.22 | 2.4 | | Monetary damages from air pollution -
Fuel Comb - Residential - Other (million
\$2019) | | 36.3 | 36.9 | 36.7 | 33.5 | 26.4 | 18.4 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Coal
(million \$2019) | | 51.7 | 49.5 | 47.1 | 44.5 | 41.8 | 39 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Natural
Gas (million \$2019) | | 144 | 138 | 129 | 112 | 89.8 | 66.3 | | Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Oil (million \$2019) | | 17.5 | 15.7 | 14.1 | 12.2 | 10.1 | 8.18 | | Monetary damages from air pollution -
Fuel Comb - Comm/Institutional - Other
(million \$2019) | | 12.2 | 11 | 9.72 | 8.52 | 7.36 | 6.27 | | Monetary damages from air pollution -
Industrial Processes - Coal Mining
(million \$2019) | | 24.7 | 15.2 | 15.1 | 14.9 | 15 | 14.7 | | Monetary damages from air pollution -
Industrial Processes - Oil & Gas
Production (million \$2019) | | 833 | 756 | 658 | 576 | 509 | 355 | Table 50: E-B+ scenario - IMPACTS - Jobs | 14510 001 2 51 000114110 17 11 11010 0050 | | | | | | | | |---|------|--------|--------|--------|--------|--------|--------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | By economic sector - Agriculture (jobs) | | 442 | 444 | 1,129 | 1,147 | 2,009 | 2,027 | | By economic sector - Construction (jobs) | | 15,343 | 17,280 | 19,378 | 21,856 | 21,766 | 24,266 | | By economic sector - Manufacturing | | 3,194 | 3,677 | 4,180 | 4,253 | 5,491 | 6,305 | | (jobs) | | | | | | | | | By economic sector - Mining (jobs) | | 2,238 | 1,663 | 1,298 | 1,025 | 760 | 490 | | By economic sector - Other (jobs) | | 2,288 | 2,588 | 3,327 | 4,049 | 3,604 | 4,059 | | By economic sector - Pipeline (jobs) | | 404 | 623 | 305 | 289 | 278 | 356 | | By economic sector - Professional (jobs) | | 6,565 | 7,098 | 9,485 | 11,454 | 13,733 | 15,319 | | By economic sector - Trade (jobs) | | 4,942 | 5,125 | 6,225 | 7,309 | 7,739 | 8,602 | | By economic sector - Utilities (jobs) | | 8,787 | 11,290 | 12,750 | 15,187 | 18,861 | 22,242 | | By resource sector - Biomass (jobs) | | 1,042 | 1,013 | 3,332 | 4,389 | 9,281 | 9,633 | | By resource sector - CO2 (jobs) | | 14.9 | 2,304 | 163 | 363 | 779 | 1,935 | | By resource sector - Coal (jobs) | | 1,495 | 345 | 151 | 132 | 119 | 105 | | By resource sector - Grid (jobs) | | 12,290 | 17,523 | 23,046 | 28,041 | 36,793 | 42,899 | | By resource sector - Natural Gas (jobs) | | 3,481 | 2,220 | 1,847 | 2,025 | 1,143 | 859 | | By resource sector - Nuclear (jobs) | | 624 | 614 | 604 | 350 | 0 | 0 | | By resource sector - Oil (jobs) | | 5,479 | 4,662 | 3,974 | 3,387 | 2,560 | 1,630 | | · | | | | | | | | Table 50: E-B+ scenario - IMPACTS - Jobs (continued) | By resource sector - Solar (jobs) 16,191 16,757 19,944 22,698 16,907 17,568 17,568 17,758 19,900 17,568 19,900 18,500 18,200 1 |
--| | By education level - All sectors - High school diploma or less (jobs) Sy education level - All sectors - Masters or professional degree (jobs) Sy education level - All sectors - Doctoral degree (jobs) Sy education level - All sectors - Doctoral degree (jobs) Sy education level - All sectors - Doctoral degree (jobs) Sy education level - All sectors - Doctoral degree (jobs) Sy education level - All sectors - | | By education level - All sectors - High school diploma or less (jobs) Sy education level - All sectors - Masters or professional degree (jobs) Sy education level - All sectors - Masters or professional degree (jobs) Sy education level - All sectors - Doctoral degree (jobs) Sy education level - All sectors - Doctoral degree (jobs) Sy education level - All sectors - Doctoral degree (jobs) Sy education level - All sectors - Up to 1 year (jobs) Sy education level - All sectors - Up to 1 year (jobs) Sy education level - All sectors - Up to 1 year (jobs) Sy education level - All sectors - Up to 1 years (jobs | | By education level - All sectors - Associates degree or some college (jobs) 13,874 15,830 18,274 21,062 23,244 26,407 Associates degree or some college (jobs) 14,858 16,698 11,378 13,097 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 16,698 14,858 14,858 16,698 14,851 14,858 16,698 14,851 14,858 16,698 14,851 14,858 14,858 16,698 14,851 14,858 16,698 14,851 14,858 14,858 14,851 14,858 14,858 14,858 14,851 14,858 | | Associates degree or some college (jobs) By education level - All sectors - 8,764 9,684 11,378 13,097 14,858 16,698 Bachelors degree (jobs) By education level - All sectors - Masters or professional degree (jobs) By education level - All sectors - Doctoral degree (jobs) By education level - All sectors - Doctoral degree (jobs) Related work experience - All sectors - 6,438 7,298 8,522 9,785 10,924 12,312 None (jobs) Related work experience - All sectors - Up 9,136 10,232 12,079 13,748 15,322 17,165 to 1 year (jobs) Related work experience - All sectors - 1 15,780 17,758 20,725 23,800 26,581 29,962 to 4 years (jobs) Related work experience - All sectors - 4 10,229 11,547 13,343 15,336 17,052 19,288 to 10 years (jobs) Related work experience - All sectors - 2,620 2,955 3,409 3,900 4,361 4,938 Over 10 years (jobs) On-the-Job Training - All sectors - Up to 1 year (jobs) On-the-Job Training - All sectors - 1 to 4 year (jobs) On-the-Job Training - All sectors - 4 to 10 years (jobs) On-the-Job Training - All sectors - 4 to 10 years (jobs) On-the-Job Training - All sectors - 4 to 10 years (jobs) On-the-Job Training - All sectors - 4 to 10 years (jobs) On-the-Job Training - All sectors - 4 to 10 years (jobs) On-the-Job Training - All sectors - 4 to 10 years (jobs) On-the-Job Training - All sectors - 0 to 1 years (jobs) On-the-Job Training - All sectors - 0 to 10 3,188 3,659 4,168 4,811 5,207 5,919 years (jobs) On-the-Job Training - All sectors - 0 to 10 years (jobs) On-the-Job Training - All sectors - 0 to 10 years (jobs) On-the-Job Training - All sectors - 0 to 10 years (jobs) | | By education level - All sectors - Bachelors degree (jobs) By education level - All sectors - Masters or professional degree (jobs) By education level - All sectors - Masters or professional degree (jobs) By education level - All sectors - Doctoral degree (jobs) By education level - All sectors - Doctoral degree (jobs) By education level - All sectors - Doctoral degree (jobs) By education level - All sectors - Doctoral degree (jobs) By education level - All sectors - Doctoral degree (jobs) By education level - All sectors - Up to 1 year (jo | | Bachelors degree (jobs) By education level - All sectors - Masters or professional degree (jobs) By education level - All sectors - Doctoral degree (jobs) By education level - All sectors - Doctoral degree (jobs) Related work experience - All sectors - Hone (jobs) Related work experience - All sectors - Up to 1 years (jobs) Related work experience - All sectors - 1 to 4 years (jobs) Related work experience - All sectors - 4 to 10 years (jobs) Related work experience - All sectors - 4 to 10 years (jobs) Related work experience - All sectors - 4 to 10 years (jobs) Related work experience - All sectors - 4 to 10 years (jobs) Related work experience -
All sectors - 2,620 | | or professional degree (jobs) 337 360 450 527 606 673 degree (jobs) Related work experience - All sectors - None (jobs) 6,438 7,298 8,522 9,785 10,924 12,312 Related work experience - All sectors - Up to 1 year (jobs) 9,136 10,232 12,079 13,748 15,322 17,165 to 1 year (jobs) 15,780 17,758 20,725 23,800 26,581 29,962 to 4 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 to 10 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 to 10 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 to 10 years (jobs) 2,620 2,955 3,409 3,900 4,361 4,938 On-the-Job Training - All sectors - None (jobs) 2,486 2,750 3,225 3,694 4,065 4,548 On-the-Job Training - All sectors - Up to 1 years (jobs) 28,735 32,223 37, | | or professional degree (jobs) 337 360 450 527 606 673 degree (jobs) Related work experience - All sectors - None (jobs) 6,438 7,298 8,522 9,785 10,924 12,312 Related work experience - All sectors - Up to 1 year (jobs) 9,136 10,232 12,079 13,748 15,322 17,165 to 1 year (jobs) 15,780 17,758 20,725 23,800 26,581 29,962 to 4 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 to 10 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 to 10 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 to 10 years (jobs) 2,620 2,955 3,409 3,900 4,361 4,938 On-the-Job Training - All sectors - None (jobs) 2,486 2,750 3,225 3,694 4,065 4,548 year (jobs) 2,486 2,750 3,223 37,900 43, | | Related work experience - All sectors - None (jobs) Related work experience - All sectors - Up to 1 year (jobs) Related work experience - All sectors - Up to 1 year (jobs) Related work experience - All sectors - 1 15,780 17,758 20,725 23,800 26,581 29,962 10,924 10,929 10,924 10,925 10,925 10,925 10,926 10,926 10,927 10,927 10,928 10,928 10,928 10,929 11,547 13,343 15,336 17,052 19,288 10,928 10,9 | | Related work experience - All sectors - None (jobs) Related work experience - All sectors - Up to 1 years (jobs) Related work experience - All sectors - 4 to 10 years (jobs) Related work experience - All sectors - 1 to 4 years (jobs) On-the-Job Training - All sectors - 1 to 4 years (jobs) On-the-Job Training - All sectors - 1 to 4 years (jobs) On-the-Job Training - All sectors - 1 to 4 years (jobs) On-the-Job Training - All sectors - 4 to 10 years (jobs) On-the-Job Training - All sectors - 1 to 4 years (jobs) On-the-Job Training - All sectors - 1 to 4 years (jobs) On-the-Job Training - All sectors - 1 to 4 years (jobs) On-the-Job Training - All sectors - 1 to 4 years (jobs) On-the-Job Training - All sectors - 4 to 10 3,188 3,659 4,168 4,811 5,207 5,919 years (jobs) On-the-Job Training - All sectors - 0 over 10 438 487 550 618 653 734 | | None (jobs) Related work experience - All sectors - Up to 1 year (jobs) (| | Related work experience - All sectors - Up to 1 year (jobs) 9,136 10,232 12,079 13,748 15,322 17,165 Related work experience - All sectors - 1 to 4 years (jobs) 15,780 17,758 20,725 23,800 26,581 29,962 Related work experience - All sectors - 4 to 10 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 Related work experience - All sectors - 4 to 10 years (jobs) 2,620 2,955 3,409 3,900 4,361 4,938 Over 10 years (jobs) 2,486 2,750 3,225 3,694 4,065 4,548 (jobs) 0n-the-Job Training - All sectors - Up to 1 year (jobs) 28,735 32,223 37,900 43,393 48,869 54,928 On-the-Job Training - All sectors - 1 to 4 years (jobs) 9,355 10,670 12,234 14,052 15,446 17,537 On-the-Job Training - All sectors - 4 to 10 years (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 On-the-Job Training - All sectors - Over 10 438 487 550 618 65 | | To 1 year (jobs) Related work experience - All sectors - 1 15,780 17,758 20,725 23,800 26,581 29,962 | | Related work experience - All sectors - 1 15,780 17,758 20,725 23,800 26,581 29,962 to 4 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 to 10 years (jobs) 2,620 2,955 3,409 3,900 4,361 4,938 Over 10 years (jobs) 2,486 2,750 3,225 3,694 4,065 4,548 (jobs) 28,735 32,223 37,900 43,393 48,869 54,928 vear (jobs) 20,486 2,750 12,234 14,052 15,446 17,537 vears (jobs) 20,486 2,750 3,223 37,900 43,393 48,869 54,928 vear (jobs) 20,486 2,750 12,234 14,052 15,446 17,537 vears (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 vears (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | To 4 years (jobs) To 29 | | Related work experience - All sectors - 4 to 10 years (jobs) 10,229 11,547 13,343 15,336 17,052 19,288 Related work experience - All sectors - Over 10 years (jobs) 2,620 2,955 3,409 3,900 4,361 4,938 On-the-Job Training - All sectors - None (jobs) 2,486 2,750 3,225 3,694 4,065 4,548 On-the-Job Training - All sectors - Up to 1 years (jobs) 28,735 32,223 37,900 43,393 48,869 54,928 On-the-Job Training - All sectors - 1 to 4 years (jobs) 9,355 10,670 12,234 14,052 15,446 17,537 On-the-Job Training - All sectors - 4 to 10 years (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | to 10 years (jobs) Related work experience - All sectors - 2,620 2,955 3,409 3,900 4,361 4,938 Over 10 years (jobs) On-the-Job Training - All sectors - None (jobs) On-the-Job Training - All sectors - Up to 1 28,735 32,223 37,900 43,393 48,869 54,928 year (jobs) On-the-Job Training - All sectors - 1 to 4 9,355 10,670 12,234 14,052 15,446 17,537 years (jobs) On-the-Job Training - All sectors - 4 to 10 3,188 3,659 4,168 4,811 5,207 5,919 years (jobs) On-the-Job Training - All sectors - 0ver 10 438 487 550 618 653 734 | | to 10 years (jobs) Related work experience - All sectors - 2,620 2,955 3,409 3,900 4,361 4,938 Over 10 years (jobs) On-the-Job Training - All sectors - None (jobs) On-the-Job Training - All sectors - Up to 1 28,735 32,223 37,900 43,393 48,869 54,928 year (jobs) On-the-Job Training - All sectors - 1 to 4 9,355 10,670 12,234 14,052 15,446 17,537 years (jobs) On-the-Job Training - All sectors - 4 to 10 3,188 3,659 4,168 4,811 5,207 5,919 years (jobs) On-the-Job Training - All sectors - 0ver 10 438 487 550 618 653 734 | | Over 10 years (jobs) 2,486 2,750 3,225 3,694 4,065 4,548 (jobs) 0n-the-Job Training - All sectors - Up to 1 year (jobs) 28,735 32,223 37,900 43,393 48,869 54,928 On-the-Job Training - All sectors - 1 to 4 years (jobs) 9,355 10,670 12,234 14,052 15,446 17,537 On-the-Job Training - All sectors - 4 to 10 years (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | On-the-Job Training - All sectors - None
(jobs) 2,486 2,750 3,225 3,694 4,065 4,548 On-the-Job Training - All sectors - Up to 1
year (jobs) 28,735 32,223 37,900 43,393 48,869 54,928 On-the-Job Training - All sectors - 1 to 4
years (jobs) 9,355 10,670 12,234 14,052 15,446 17,537 On-the-Job Training - All sectors - 4 to 10
years (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | (jobs) 28,735 32,223 37,900 43,393 48,869 54,928 year (jobs) 0n-the-Job Training - All sectors - 1 to 4 years (jobs) 9,355 10,670 12,234 14,052 15,446 17,537 On-the-Job Training - All sectors - 4 to 10 years (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | On-the-Job Training - All sectors - Up to 1 year (jobs) 28,735 32,223 37,900 43,393 48,869 54,928 On-the-Job Training - All sectors - 1 to 4 years (jobs) 9,355 10,670 12,234 14,052 15,446 17,537 On-the-Job Training - All sectors - 4 to 10 years (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | year (jobs) 9,355 10,670 12,234 14,052 15,446 17,537 years (jobs) 0n-the-Job Training - All sectors - 4 to 10 3,188 3,659 4,168 4,811 5,207 5,919 years (jobs) 0n-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | On-the-Job Training - All sectors - 1 to 4 years (jobs) 9,355 10,670 12,234 14,052 15,446 17,537 On-the-Job Training - All sectors - 4 to 10 years (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | years (jobs) 3,188 3,659 4,168 4,811 5,207 5,919 years (jobs) 0n-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | On-the-Job Training - All sectors - 4 to 10 3,188 3,659 4,168 4,811 5,207 5,919 years (jobs) On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | years (jobs) 438 487 550 618 653 734 | | On-the-Job Training - All sectors - Over 10 438 487 550 618 653 734 | | | | (inha) | | years (jobs) | | On-Site or In-Plant Training - All sectors - 7,193 8,043 9,443 10,825 12,031 13,526 | | None (jobs) | | On-Site or In-Plant Training - All sectors - 26,157 29,372 34,450 39,444 44,321 49,854 | | Up to 1 year (jobs) | |
On-Site or In-Plant Training - All sectors - 7,258 8,263 9,500 10,900 12,000 13,602 | | 1 to 4 years (jobs) | | On-Site or In-Plant Training - All sectors - 3,210 3,666 4,173 4,807 5,229 5,933 | | 4 to 10 years (jobs) | | On-Site or In-Plant Training - All sectors - 385 445 511 591 658 751 | | Over 10 years (jobs) | | Wage income - All (million \$2019) 2,394 2,730 3,209 3,728 4,227 4,835 | Table 51: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Final energy use - Transportation (PJ) | 670 | 628 | 574 | 531 | 498 | 459 | 413 | | Final energy use - Residential (PJ) | 241 | 228 | 218 | 206 | 189 | 170 | 154 | | Final energy use - Commercial (PJ) | 182 | 179 | 174 | 169 | 162 | 155 | 149 | | Final energy use - Industry (PJ) | 241 | 250 | 272 | 277 | 295 | 331 | 335 | ## Table 52: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Electricity distribution capital invested - | | 3.2 | 3.23 | 3.9 | 4.01 | 5.79 | 6.1 | | Cumulative 5-yr (billion \$2018) | | | | | | | | | Table 53: E-B+ scenario - | PILLAR 1: Efficiency | /Flectrification - | Transportation | |---------------------------|----------------------|--------------------|----------------| | | | | | | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Vehicle stocks - LDV – EV (1000 units) | 23.3 | 155 | 287 | 899 | 1,510 | 2,863 | 4,216 | | Vehicle stocks - LDV – All others (1000 | 5,511 | 5,511 | 5,511 | 5,228 | 4,944 | 3,810 | 2,676 | | units) | | | | | | | | | Light-duty vehicle capital costs vs. REF - | | 0 | 171 | 359 | 1,211 | 3,810 | 5,551 | | Cumulative 5-yr (million \$2018) | | | | | | | | | Public EV charging plugs - DC Fast (1000 | 0.178 | | 0.611 | | 3.21 | | 8.98 | | units) | | | | | | | | | Public EV charging plugs - L2 (1000 units) | 1.67 | | 14.7 | | 77.3 | | 216 | ## Table 54: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Sales of space heating units - Electric | 7.5 | 13 | 18.7 | 35.2 | 61.1 | 79 | 85.2 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 19.7 | 24.8 | 23.3 | 19.2 | 12.8 | 8.51 | 7.04 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas (%) | 63.5 | 47.3 | 43.7 | 33.5 | 17.6 | 6.67 | 2.55 | | Sales of space heating units - Fossil (%) | 9.34 | 14.9 | 14.4 | 12.2 | 8.46 | 5.78 | 5.24 | | Sales of water heating units - Electric | 0 | 1.51 | 5.81 | 18.2 | 37.5 | 50.4 | 55 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 42.5 | 57.5 | 56.3 | 52.9 | 47.8 | 44.7 | 43.6 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 57.4 | 40.9 | 37.8 | 28.9 | 14.7 | 4.93 | 1.34 | | (%) | | | | | | | | | Sales of water heating units - Other (%) | 0.034 | 0.035 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | | Sales of cooking units - Electric | 76.4 | 77 | 79.2 | 84.9 | 92.8 | 97.7 | 99.4 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 23.6 | 23 | 20.8 | 15.1 | 7.21 | 2.33 | 0.626 | | Residential HVAC investment in 2020s vs. | | 5.81 | 7.68 | | | | | | REF - Cumulative 5-yr (billion \$2018) | | | | | | | | ## Table 55: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|--------|--------|-------|-------|-------|-------| | Sales of space heating units - Electric | 4.52 | 15.9 | 21.2 | 36.6 | 61.3 | 79.5 | 86.8 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 8.06 | 5.57 | 5.72 | 6.25 | 7.38 | 8.69 | 9.45 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas Furnace | 87.4 | 76.5 | 71.1 | 55.7 | 30.6 | 11.6 | 3.64 | | (%) | | | | | | | | | Sales of space heating units - Fossil (%) | 0 | 2.02 | 1.9 | 1.42 | 0.689 | 0.224 | 0.059 | | Sales of water heating units - Electric | 1.19 | 2.53 | 7.36 | 21.3 | 43.1 | 57.7 | 63 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 10.1 | 7.76 | 9.75 | 15.5 | 24.6 | 31 | 33.4 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 87.7 | 88.7 | 81.9 | 62.3 | 31.6 | 10.6 | 2.88 | | (%) | | | | | | | | | Sales of water heating units - Other (%) | 0.996 | 0.987 | 0.962 | 0.892 | 0.786 | 0.72 | 0.695 | | Sales of cooking units - Electric | 44.8 | 49.3 | 53.1 | 63 | 76.9 | 85.5 | 88.5 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 55.2 | 50.7 | 46.9 | 37 | 23.1 | 14.5 | 11.5 | | Commercial HVAC investment in 2020s - | | 16,266 | 17,675 | | | | | | Cumulative 5-yr (million \$2018) | | | | | | | | ## Table 56: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--------------------------------------|-------|-------|-------|-------|-------|-------|-------| | Installed thermal - Coal (MW) | 7,000 | 1,299 | 0 | 0 | 0 | 0 | 0 | | Installed thermal - Natural gas (MW) | 6,692 | 4,262 | 4,134 | 3,736 | 1,071 | 1,404 | 1,302 | | Installed thermal - Nuclear (MW) | 1,236 | 1,236 | 1,236 | 1,236 | 0 | 0 | 0 | Table 56: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Capital invested - Biomass power plant (billion \$2018) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Capital invested - Biomass w/ccu allam power plant (billion \$2018) | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | | Capital invested - Biomass w/ccu power plant (billion \$2018) | 0 | 0 | 0 | 0 | 3.67 | 21.9 | 3.22 | # Table 57: E-B+ scenario - PILLAR 2: Clean Electricity - Generation | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---------------------------------------|------|------|------|------|-------|--------|--------| | Biomass power plant (GWh) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Biomass w/ccu power plant (GWh) | 0 | 0 | 0 | 0 | 4,118 | 28,723 | 32,333 | | Biomass w/ccu allam power plant (GWh) | 0 | 0 | 0 | 0 | 0 | 9.64 | 9.64 | ### Table 58: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|-------|-------|--------|-------| | Number of facilities - Power (quantity) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Number of facilities - Power ccu | 0 | 0 | 0 | 0 | 3 | 23 | 26 | | (quantity) | | | | | | | | | Number of facilities - Allam power w ccu | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | (quantity) | | | | | | | | | Number of facilities - Beccs hydrogen | 0 | 0 | 0 | 7 | 10 | 18 | 21 | | (quantity) | | | | | | | | | Number of facilities - Diesel (quantity) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Number of facilities - Diesel ccu (quantity) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | Number of facilities - Pyrolysis (quantity) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Number of facilities - Pyrolysis ccu | 0 | 0 | 0 | 0 | 1 | 1 | 2 | | (quantity) | | | | | | | | | Number of facilities - Sng (quantity) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Number of facilities - Sng ccu (quantity) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Conversion capital investment - | | 0 | 0 | 6,005 | 6,222 | 27,270 | 5,804 | | Cumulative 5-yr (million \$2018) | | | | | | | | | Biomass purchases (million \$2018/y) | | 0 | 0 | 549 | 1,075 | 3,318 | 3,802 | #### Table 59: E-B+ scenario - PILLAR 4: CCUS - CO2 capture | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |------------------------------------|------|------|------|------|------|------|------| | Annual - All (MMT) | | 0 | 3.24 | 11.1 | 18.8 | 59.3 | 66.5 | | Annual - BECCS (MMT) | | 0 | 0 | 7.72 | 15.5 | 49 | 55.9 | | Annual - NGCC (MMT) | | 0 | 0 | 0 | 0 | 0 | 0 | | Annual - Cement and lime (MMT) | | 0 | 3.24 | 3.35 | 3.32 | 10.3 | 10.6 | | Cumulative - All (MMT) | | 0 | 3.24 | 14.3 | 33.1 | 92.3 | 159 | | Cumulative - BECCS (MMT) | | 0 | 0 | 7.72 | 23.2 | 72.2 | 128 | | Cumulative - NGCC (MMT) | | 0 | 0 | 0 | 0 | 0 | 0 | | Cumulative - Cement and lime (MMT) | | 0 | 3.24 | 6.59 | 9.91 | 20.2 | 30.8 | ## Table 60: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|-------|-------|-------|-------|-------| | Trunk (km) | | 0 | 409 | 409 | 409 | 409 | 409 | | Spur (km) | | 0 | 10.4 | 173 | 393 | 2,027 | 2,587 | | All (km) | | 0 | 420 | 582 | 802 | 2,436 | 2,996 | | Cumulative investment - Trunk (million
\$2018) | | 0 | 1,950 | 1,950 | 2,145 | 2,145 | 2,145 | | Cumulative investment - Spur (million \$2018) | | 0 | 11.9 | 351 | 550 | 2,677 | 3,120 | | Cumulative investment - All (million \$2018) | | 0 | 1,962 | 2,301 | 2,695 | 4,822 | 5,266 | Table 61: E-B+ scenario - PILLAR 4: CCUS - CO2 storage | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Annual (MMT) | | 0 | 0.92 | 4.28 | 7.13 | 10.8 | 10.9 | | Injection wells (wells) | | 0 | 2 | 7 | 13 | 22 | 27 | | Resource characterization, appraisal, permitting costs (million \$2020) | | 27.9 | 123 | 190 | 190 | 190 | 190 | | Wells and facilities construction costs (million \$2020) | | 0 | 55.8 | 217 | 387 | 648 | 804 | Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests | Item | 2020 | 2025 | 2030 | 2035 | 2040 |
2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - Low - Accelerate regeneration (1000 tC02e/y) | | | | | | | -82 | | Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y) | | | | | | | -379 | | Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y) | | | | | | | -2,973 | | Carbon sink potential - Low - Improve plantations (1000 tCO2e/y) | | | | | | | -77 | | Carbon sink potential - Low - Increase | | | | | | | -1,07 | | retention of HWP (1000 tC02e/y) Carbon sink potential - Low - Increase | | | | | | | -787 | | trees outside forests (1000 tC02e/y) Carbon sink potential - Low - Reforest | | | | | | | -5,328 | | cropland (1000 tCO2e/y) Carbon sink potential - Low - Reforest | | | | | | | -1,59 | | pasture (1000 tC02e/y) Carbon sink potential - Low - Restore | | | | | | | -1,244 | | productivity (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - All (not counting overlap) (1000 tCO2e/y) | | | | | | | -13,53 | | Carbon sink potential - Mid - Accelerate regeneration (1000 tC02e/y) | | | | | | | -123 | | Carbon sink potential - Mid - Avoid
deforestation (1000 tCO2e/y) | | | | | | | -1,32 | | Carbon sink potential - Mid - Extend rotation length (1000 tCO2e/y) | | | | | | | -5,35 | | Carbon sink potential - Mid - Improve | | | | | | | -11: | | plantations (1000 tCO2e/y) Carbon sink potential - Mid - Increase | | | | | | | -2,14 | | retention of HWP (1000 tCO2e/y) Carbon sink potential - Mid - Increase | | | | | | | -1,51 | | trees outside forests (1000 tC02e/y) Carbon sink potential - Mid - Reforest | | | | | | | -7,99 | | cropland (1000 tCO2e/y) Carbon sink potential - Mid - Reforest | | | | | | | -11,338 | | pasture (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Mid - Restore productivity (1000 tC02e/y) | | | | | | | -2,46 | | Carbon sink potential - Mid - All (not counting overlap) (1000 tCO2e/y) | | | | | | | -32,374 | | Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y) | | | | | | | -164 | | Carbon sink potential - High - Avoid deforestation (1000 tC02e/y) | | | | | | | -2,274 | | Carbon sink potential - High - Extend | | | | | | | -7,74 | | rotation length (1000 tCO2e/y) Carbon sink potential - High - Improve | | | | | | | -15 | | plantations (1000 tCO2e/y) | | | | | | | | Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - High - Increase | | | | | | | -3,212 | | retention of HWP (1000 tC02e/y) | | | | | | | 0.017 | | Carbon sink potential - High - Increase | | | | | | | -2,247 | | trees outside forests (1000 tC02e/y) | | | | | | | 10 (5) | | Carbon sink potential - High - Reforest | | | | | | | -10,656 | | cropland (1000 tCO2e/y) | | | | | | | 04.070 | | Carbon sink potential - High - Reforest | | | | | | | -21,079 | | pasture (1000 tC02e/y) | | | | | | | = | | Carbon sink potential - High - All (not | | | | | | | -51,213 | | counting overlap) (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Restore | | | | | | | -3,690 | | productivity (1000 tCO2e/y) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 13.4 | | Low - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 289 | | Low - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,512 | | Low - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 27.9 | | Low - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Low - Increase retention of HWP (1000 | | | | | | | · | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 112 | | Low - Increase trees outside forests | | | | | | | 112 | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 352 | | Low - Reforest cropland (1000 hectares) | | | | | | | 332 | | Land impacted for carbon sink potential - | | | | | | | 104 | | Low - Reforest pasture (1000 hectares) | | | | | | | 104 | | | | | | | | | 7/0 | | Land impacted for carbon sink potential - | | | | | | | 740 | | Low - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,151 | | Low - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 20.1 | | Mid - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 298 | | Mid - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 2,730 | | Mid - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 41.9 | | Mid - Improve plantations (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Mid - Increase retention of HWP (1000 | | | | | | | _ | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 163 | | Mid - Increase trees outside forests (1000 | | | | | | | 100 | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 528 | | | | | | | | | 328 | | Mid - Reforest cropland (1000 hectares) | | | | | | | 751 | | Land impacted for carbon sink potential - | | | | | | | 751 | | Mid - Reforest pasture (1000 hectares) | | 1 | | | | | | Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|-------| | Land impacted for carbon sink potential - | | | | | | | 1,490 | | Mid - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 6,022 | | Mid - Total impacted (over 30 years) (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 26.8 | | High - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 308 | | High - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,947 | | High - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 55.7 | | High - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | High - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 214 | | High - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 705 | | High - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 599 | | High - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 1,223 | | High - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 7,077 | | High - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | Table 63: E-B+ scenario - PILLAR 6: Land sinks - Agriculture | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---------------------------------------|------|------|------|------|------|------|---------| | Carbon sink potential - Moderate | | | | | | | -1,072 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -6,467 | | deployment - Cropland measures (1000 | | | | | | | | | tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -142 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | 0 | | deployment - Cropland to woody energy | | | | | | | | | crops (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | 0 | | deployment - Pasture to energy crops | | | | | | | | | (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Moderate | | | | | | | -7,681 | | deployment - Total (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -1,072 | | deployment - Corn-ethanol to energy | | | | | | | | | grasses (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | -12,355 | | deployment - Cropland measures (1000 | | | | | | | | | tCO2e/y) | | | | | | | | Table 63: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|---------| | Carbon sink potential - Aggressive | | | | | | | -284 | | deployment - Permanent conservation | | | | | | | | | cover (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Aggressive | | | | | | | 0 | | deployment - Cropland to woody energy | | | | | | | | | crops (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Aggressive deployment - Pasture to energy crops | | | | | | | 0 | | (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Aggressive |
 | | | | | -13,711 | | deployment - Total (1000 tC02e/y) | | | | | | | -13,111 | | Land impacted for carbon sink - Moderate | | | | | | | 497 | | deployment - Corn-ethanol to energy | | | | | | | 471 | | grasses (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 2,765 | | deployment - Cropland measures (1000 | | | | | | | 2,100 | | hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | + | 259 | | deployment - Permanent conservation | | | | | | | | | cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 292 | | deployment - Cropland to woody energy | | | | | | | | | crops (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 979 | | deployment - Pasture to energy crops | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink - Moderate | | | | | | | 4,793 | | deployment - Total (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 497 | | Aggressive deployment - Corn-ethanol to | | | | | | | | | energy grasses (1000 hectares) | | | | | | | 10.010 | | Land impacted for carbon sink - | | | | | | | 13,018 | | Aggressive deployment - Cropland | | | | | | | | | measures (1000 hectares) Land impacted for carbon sink - | | | | | | | 517 | | Aggressive deployment - Permanent | | | | | | | 317 | | conservation cover (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 292 | | Aggressive deployment - Cropland to | | | | | | | 272 | | woody energy crops (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 979 | | Aggressive deployment - Pasture to | | | | | | | , | | energy crops (1000 hectares) | | | | | | | | | Land impacted for carbon sink - | | | | | | | 15,303 | | Aggressive deployment - Total (1000 | | | | | | | • | | hectares) | | | | | | | | Table 64: REF scenario - IMPACTS - Health | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Premature deaths from air pollution - | | 255 | 152 | 102 | 80 | 71.1 | 70.3 | | Fuel Comb - Electric Generation - Coal | | | | | | | | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 24.7 | 22.2 | 23.6 | 17.2 | 14.8 | 13.2 | | Fuel Comb - Electric Generation - Natural | | | | | | | | | Gas (deaths) | | | | | | | | | Premature deaths from air pollution - | | 149 | 152 | 155 | 159 | 163 | 167 | | Mobile - On-Road (deaths) | | | | | | | | | Premature deaths from air pollution - Gas | | 11.6 | 11.8 | 11.9 | 12.1 | 12.3 | 12.4 | | Stations (deaths) | | | | | | | | Table 64: REF scenario - IMPACTS - Health (continued) | Table 64: REF scenario - IMPACTS - Health
Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|-------|-------|-------|-------|-------|-------| | Premature deaths from air pollution - | 2020 | 22 | 19.9 | 17.9 | 16.7 | 16.1 | 15.7 | | Fuel Comb - Residential - Natural Gas | | | .,,, | , | | | 1011 | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 0.549 | 0.476 | 0.362 | 0.252 | 0.165 | 0.115 | | Fuel Comb - Residential - Oil (deaths) | | | | | | | | | Premature deaths from air pollution - | | 3.83 | 3.74 | 3.71 | 3.73 | 3.71 | 3.64 | | Fuel Comb - Residential - Other (deaths) | | | | | | | | | Premature deaths from air pollution - | | 6.1 | 6.12 | 6.11 | 6.07 | 6.02 | 5.94 | | Fuel Comb - Comm/Institutional - Coal | | | | | | | | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 16.5 | 15.9 | 14.3 | 12.6 | 11.6 | 11.3 | | Fuel Comb - Comm/Institutional - Natural | | | | | | | | | Gas (deaths) | | | | | | | | | Premature deaths from air pollution - | | 2.05 | 2.04 | 2.01 | 1.93 | 1.87 | 1.83 | | Fuel Comb - Comm/Institutional - Oil | | | | | | | | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 1.44 | 1.47 | 1.49 | 1.52 | 1.54 | 1.56 | | Fuel Comb - Comm/Institutional - Other | | | | | | | | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 4.77 | 3.6 | 3.1 | 2.97 | 2.91 | 2.76 | | Industrial Processes - Coal Mining | | | | | | | | | (deaths) | | | | | | | | | Premature deaths from air pollution - | | 94.3 | 98.9 | 101 | 96.2 | 95.1 | 88.3 | | Industrial Processes - Oil & Gas | | | | | | | | | Production (deaths) | | | | | | | | | Monetary damages from air pollution - | | 2,256 | 1,349 | 900 | 709 | 630 | 623 | | Fuel Comb - Electric Generation - Coal | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 219 | 197 | 209 | 152 | 131 | 117 | | Fuel Comb - Electric Generation - Natural | | | | | | | | | Gas (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 1,320 | 1,347 | 1,376 | 1,412 | 1,448 | 1,483 | | Mobile - On-Road (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 103 | 104 | 105 | 107 | 109 | 110 | | Gas Stations (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 195 | 176 | 159 | 148 | 143 | 139 | | Fuel Comb - Residential - Natural Gas | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 4.86 | 4.22 | 3.2 | 2.23 | 1.46 | 1.02 | | Fuel Comb - Residential - Oil (million | | | | | | | | | \$2019) | | | | | | | | | Monetary damages from air pollution - | | 33.9 | 33.1 | 32.9 | 33.1 | 32.8 | 32.3 | | Fuel Comb - Residential - Other (million | | | | | | | | | \$2019) | | | | | | | | | Monetary damages from air pollution - | | 54 | 54.2 | 54.1 | 53.7 | 53.3 | 52.6 | | Fuel Comb - Comm/Institutional - Coal | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 146 | 141 | 127 | 111 | 102 | 100 | | Fuel Comb - Comm/Institutional - Natural | | | | | | | | | Gas (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 18.2 | 18.1 | 17.8 | 17.1 | 16.5 | 16.2 | | Fuel Comb - Comm/Institutional - Oil | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 12.8 | 13 | 13.2 | 13.4 | 13.6 | 13.8 | | Fuel Comb - Comm/Institutional - Other | | | | | | | | | (million \$2019) | | | | | | | | | Monetary damages from air pollution - | | 42.1 | 31.7 | 27.4 | 26.2 | 25.6 | 24.4 | | | | | | | | | | | Industrial Processes - Coal Mining | | ı | 1 | 1 | | | | Table 64: REF scenario - IMPACTS - Health (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Monetary damages from air pollution -
Industrial Processes - Oil & Gas
Production (million \$2019) | | 837 | 878 | 895 | 855 | 844 | 784 | ### Table 65: REF scenario - IMPACTS - Jobs | Table 65: REF scenario - IMPACTS - Jobs | | | | | | | | |--|------|--------|---------|--------|--------|--------|--------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | By economic sector - Agriculture (jobs) | | 442 | 441 | 441 | 440 | 440 | 441 | | By economic sector - Construction (jobs) | | 4,797 | 4,298 | 7,826 | 9,060 | 9,143 | 10,941 | | By economic sector - Manufacturing (jobs) | | 2,241 | 1,995 | 2,050 | 2,383 | 2,262 | 2,522 | | By economic sector - Mining (jobs) | | 2,463 | 1,853 | 1,511 | 1,213 | 1,005 | 855 | | By economic sector - Other (jobs) | | 260 | 306 | 1,229 | 1,456 | 1,617 | 2,061 | | By economic sector - Pipeline (jobs) | | 413 | 421 | 423 | 406 | 413 | 415 | | By economic sector - Professional (jobs) | | 2,748 | 2,204 | 3,465 | 4,212 | 4,237 | 5,110 | | By economic sector - Trade (jobs) | | 2,739 | 2,179 | 2,994 | 3,322 | 3,359 | 3,981 | | By economic sector - Utilities (jobs) | | 7,177 | 4,973 | 5,279 | 7,033 | 6,606 | 8,201 | | By resource sector - Biomass (jobs) | | 1,041 | 1,011 | 985 | 960 | 940 | 921 | | By resource sector - CO2 (jobs) | | 0 | 0.022 | 0.028 | 0.03 | 0.033 | 0.035 | | By resource sector - Coal (jobs) | | 2,494 | 1,346 | 875 | 603 | 246 | 106 | | By resource sector - Grid (jobs) | | 9,115 | 5,758 | 6,596 | 9,915 | 10,346 | 14,478 | | By resource sector - Natural Gas (jobs) | | 3,570 | 3,052 | 3,126 | 3,457 | 2,869 | 2,755 | | By resource sector - Nuclear (jobs) | | 624 | 614 | 604 | 595 | 345 | 0 | | By resource sector - Oil (jobs) | | 5,513 | 4,760 | 4,222 | 3,930 | 3,751 | 3,628 | | By resource sector - Solar (jobs) | | | 1,017 | 7,618 | 7,965 | 8,523 | 10,196 | | By resource sector - Wind (jobs) | | 922 | 1,111 | 1,191 | 2,100 | 2,062 | 2,444 | | By education level - All sectors - High | | 9,856 | 7,996 | 10,920 | 12,687 | 12,541 | 14,876 | | school diploma or less (jobs) | | , | , | , - | , | ,- | , | | By education level - All sectors - | | 7,116 | 5,655 | 7,810 | 9,273 | 9,153 | 10,975 | | Associates degree or some college (jobs) | | , - | ,,,,,,, | , | , - | , | -, | | By education level - All sectors - | | 4,953 | 3,940 | 5,057 | 5,883 | 5,739 | 6,731 | | Bachelors degree (jobs) | | | , | | , | , | , | | By education level - All sectors - Masters | | 1,195 | 948 | 1,244 | 1,464 | 1,436 | 1,695 | | or professional degree (jobs) | | | | | | | • | | By education level - All sectors - Doctoral | | 159 | 131 | 186 | 216 | 213 | 249 | | degree (jobs) | | | | | | | | | Related work experience - All sectors - | | 3,396 | 2,729 | 3,700 | 4,342 | 4,291 | 5,112 | | None (jobs) | | | | | | | | | Related work experience - All sectors - Up | | 4,593 | 3,755 | 5,209 | 6,034 | 5,971 | 7,064 | | to 1 year (jobs) | | | | | | | | | Related work experience - All sectors - 1 | | 8,466 | 6,745 | 9,024 | 10,574 | 10,405 | 12,359 | | to 4 years (jobs) | | | | | | | | | Related work experience - All sectors - 4 | | 5,404 | 4,305 | 5,791 | 6,819 | 6,696 | 7,959 | | to 10 years (jobs) | | | | | | | | | Related work experience -
All sectors - | | 1,420 | 1,134 | 1,493 | 1,755 | 1,718 | 2,034 | | Over 10 years (jobs) | | | | | | | | | On-the-Job Training - All sectors - None | | 1,257 | 1,023 | 1,414 | 1,630 | 1,608 | 1,892 | | (jobs) | | | | | | | | | On-the-Job Training - All sectors - Up to 1 | | 15,513 | 12,448 | 16,555 | 19,299 | 18,998 | 22,486 | | year (jobs) | | | | | | | | | On-the-Job Training - All sectors - 1 to 4 | | 4,793 | 3,817 | 5,251 | 6,223 | 6,130 | 7,333 | | years (jobs) | | | | | | | | | On-the-Job Training - All sectors - 4 to 10 | | 1,516 | 1,211 | 1,755 | 2,093 | 2,073 | 2,498 | | years (jobs) | | | | | | | | | On-the-Job Training - All sectors - Over 10 | | 200 | 169 | 242 | 278 | 273 | 318 | | years (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 3,653 | 2,952 | 4,061 | 4,740 | 4,666 | 5,518 | | None (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 14,114 | 11,315 | 15,064 | 17,572 | 17,301 | 20,496 | | Up to 1 year (jobs) | | | | | | | | ### Table 65: REF scenario - IMPACTS - Jobs (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|-------|-------|-------|-------|-------|-------| | On-Site or In-Plant Training - All sectors - | | 3,739 | 2,984 | 4,092 | 4,834 | 4,765 | 5,695 | | 1 to 4 years (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 1,576 | 1,261 | 1,784 | 2,117 | 2,091 | 2,506 | | 4 to 10 years (jobs) | | | | | | | | | On-Site or In-Plant Training - All sectors - | | 197 | 157 | 217 | 260 | 258 | 311 | | Over 10 years (jobs) | | | | | | | | | Wage income - All (million \$2019) | | 1,292 | 1,042 | 1,400 | 1,665 | 1,656 | 1,990 | ### Table 66: REF scenario - PILLAR 1: Efficiency/Electrification - Overview | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|------| | Final energy use - Transportation (PJ) | 670 | 629 | 580 | 552 | 553 | 571 | 593 | | Final energy use - Residential (PJ) | 241 | 227 | 219 | 214 | 212 | 213 | 214 | | Final energy use - Commercial (PJ) | 182 | 183 | 183 | 181 | 179 | 181 | 187 | | Final energy use - Industry (PJ) | 241 | 258 | 268 | 276 | 288 | 303 | 318 | ### Table 67: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|------|------|------|------|------|------|------| | Electricity distribution capital invested - | | 3.46 | 3.52 | 3.75 | 3.83 | 4.56 | 4.72 | | Cumulative 5-yr (billion \$2018) | | | | | | | | #### Table 68: REF scenario - PILLAR 1: Efficiency/Electrification - Residential | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|-------|-------|-------|-------|-------|-------| | Sales of space heating units - Electric | 4.86 | 29.6 | 30.8 | 32.6 | 34.1 | 35.7 | 37.6 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 20.4 | 20.8 | 20.3 | 19.8 | 19.4 | 18 | 15.9 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas (%) | 65.2 | 38.7 | 37.8 | 36.4 | 35.8 | 36 | 36 | | Sales of space heating units - Fossil (%) | 9.54 | 10.9 | 11.1 | 11.1 | 10.6 | 10.2 | 10.6 | | Sales of water heating units - Electric | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 42.5 | 58 | 57.9 | 57.7 | 57.7 | 57.6 | 57.5 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 57.4 | 42 | 42.1 | 42.3 | 42.3 | 42.4 | 42.4 | | (%) | | | | | | | | | Sales of water heating units - Other (%) | 0.034 | 0.035 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | | Sales of cooking units - Electric | 76.2 | 76.2 | 76.2 | 76.2 | 76.2 | 76.2 | 76.2 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 23.8 | 23.8 | 23.8 | 23.8 | 23.8 | 23.8 | 23.8 | | Residential HVAC investment in 2020s vs. | | 5.54 | 5.98 | | | | | | REF - Cumulative 5-yr (billion \$2018) | | | | | | | | ### Table 69: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|-------|-------|-------|-------|-------|-------| | Sales of space heating units - Electric | 4.52 | 20.5 | 48.3 | 71.1 | 74.8 | 75.2 | 75.2 | | Heat Pump (%) | | | | | | | | | Sales of space heating units - Electric | 8.06 | 6.43 | 10.8 | 18.4 | 23.5 | 24.2 | 24.3 | | Resistance (%) | | | | | | | | | Sales of space heating units - Gas Furnace | 87.4 | 71.1 | 39.3 | 9.83 | 1.63 | 0.522 | 0.461 | | (%) | | | | | | | | | Sales of space heating units - Fossil (%) | 0 | 1.98 | 1.55 | 0.695 | 0.102 | 0.009 | 0 | | Sales of water heating units - Electric | 1.19 | 0.826 | 0.821 | 0.823 | 0.819 | 0.815 | 0.814 | | Heat Pump (%) | | | | | | | | | Sales of water heating units - Electric | 10.1 | 7.06 | 7.07 | 7.05 | 7.05 | 7.05 | 7.04 | | Resistance (%) | | | | | | | | | Sales of water heating units - Gas Furnace | 87.7 | 91.1 | 91.1 | 91.1 | 91.1 | 91.1 | 91.1 | | (%) | | | | | | | | | Table 69. RFF st | renario - DTI I AR 1 | Efficiency/Electrification - | Commercial (continued) | |------------------|----------------------|---------------------------------|---------------------------------| | Table 07. NEF 30 | CEIIUI IO - FILLAN I | LIIIGIGIIGV/LIGGII IIIGUIIUII : | - 6011111161 6141 1601111114641 | | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|-------|--------|--------|-------|-------|-------|-------| | Sales of water heating units - Other (%) | 0.996 | 0.996 | 0.994 | 0.993 | 0.993 | 0.997 | 0.996 | | Sales of cooking units - Electric | 44.8 | 47.8 | 47.9 | 47.8 | 47.9 | 47.9 | 48 | | Resistance (%) | | | | | | | | | Sales of cooking units - Gas (%) | 55.2 | 52.2 | 52.1 | 52.2 | 52.1 | 52.1 | 52 | | Commercial HVAC investment in 2020s - | | 16,080 | 16,491 | | | | | | Cumulative 5-yr (million \$2018) | | | | | | | | ## Table 70: REF scenario - PILLAR 2: Clean Electricity - Generating capacity | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|--------|--------|--------|--------|--------|--------|--------| | Installed thermal - Coal (MW) | 7,000 | 5,110 | 2,037 | 2,037 | 999 | 0 | 0 | | Installed thermal - Natural gas (MW) | 6,687 | 4,262 | 4,724 | 4,828 | 1,659 | 3,268 | 3,730 | | Installed thermal - Nuclear (MW) | 1,236 | 1,236 | 1,236 | 1,236 | 1,236 | 0 | 0 | | Installed renewables - Rooftop PV (MW) | 153 | 269 | 400 | 605 | 898 | 1,277 | 1,767 | | Installed renewables - Solar - Base land use assumptions (MW) | 33.6 | 33.6 | 33.6 | 3,454 | 10,567 | 15,905 | 20,289 | | Installed renewables - Wind - Base land use assumptions (MW) | 12,646 | 13,206 | 13,883 | 13,883 | 20,577 | 25,228 | 34,849 | ## Table 71: REF scenario - PILLAR 2: Clean Electricity - Generation | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|--------|--------|--------|--------|--------|--------|---------| | Solar - Base land use assumptions (GWh) | 72.4 | 72.4 | 72.4 | 6,548 | 19,946 | 29,977 | 38,210 | | Wind - Base land use assumptions (GWh) | 44,187 | 46,024 | 48,266 | 48,266 | 70,093 | 85,166 | 116,445 | | OffshoreWind - Base land use | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | assumptions (GWh) | | | | | | | | #### Table 72: REF scenario - PILLAR 6: Land sinks - Forests - REF only | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |---|--------|------|-------|------|------|------|-------| | Business-as-usual carbon sink - Natural | -4.2 | | -13.4 | | | | -12 | | uptake (Mt CO2e/y) | | | | | | | | | Business-as-usual carbon sink - Retained | -0.874 | | -1.57 | | | | -1.63 | | in Hardwood Products (Mt CO2e/y) | | | | | | | | | Business-as-usual carbon sink - Total (Mt | -5.07 | | -15 | | | | -13.6 | | CO2e/y) | | | | | | | | #### Table 73: REF scenario - PILLAR 6: Land sinks - Forests | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|---------| | Carbon sink potential - Low - Accelerate | | | | | | | -82 | | regeneration (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Avoid | | | | | | | -379 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Extend | | | | | | | -2,973 | | rotation length (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Improve | | | | | | | -77 | | plantations (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -1,071 | | retention of HWP (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Increase | | | | | | | -787 | | trees outside forests (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -5,328 | | cropland (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Reforest | | | | | | | -1,597 | | pasture (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - Restore | | | | | | | -1,244 | | productivity (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - Low - All (not | | | | | | | -13,537 | | counting overlap) (1000 tCO2e/y) | | | | | | | | Table 73: REF scenario - PILLAR 6: Land sinks - Forests (continued) | Table 13: REF SCENULIO - PILLAR 6: LUNU SINK | | | | 2225 | 2010 | 2015 | | |--|------|------|------|------|------|------|----------| | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Carbon sink potential - Mid - Accelerate | | | | | | | -123 | | regeneration (1000 tC02e/y) | | | | | | | 1.007 | | Carbon sink potential - Mid - Avoid | | | | | | | -1,326 | | deforestation (1000 tCO2e/y) | | | | | | | F 057 | | Carbon sink potential - Mid - Extend | | |
 | | | -5,357 | | rotation length (1000 tC02e/y) | | | | | | | | | Carbon sink potential - Mid - Improve | | | | | | | -113 | | plantations (1000 tC02e/y) | | | | | | | 0.1/1 | | Carbon sink potential - Mid - Increase | | | | | | | -2,141 | | retention of HWP (1000 tC02e/y) | | | | | | | 4 547 | | Carbon sink potential - Mid - Increase | | | | | | | -1,517 | | trees outside forests (1000 tC02e/y) | | | | | | | 7000 | | Carbon sink potential - Mid - Reforest | | | | | | | -7,992 | | cropland (1000 tC02e/y) | | | | | | | 11 000 | | Carbon sink potential - Mid - Reforest | | | | | | | -11,338 | | pasture (1000 tC02e/y) | | | | | | | 0.77 | | Carbon sink potential - Mid - Restore | | | | | | | -2,467 | | productivity (1000 tC02e/y) | | | | | | | 00.07/ | | Carbon sink potential - Mid - All (not | | | | | | | -32,374 | | counting overlap) (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Accelerate | | | | | | | -164 | | regeneration (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Avoid | | | | | | | -2,274 | | deforestation (1000 tCO2e/y) | | | | | | | | | Carbon sink potential - High - Extend | | | | | | | -7,741 | | rotation length (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Improve | | | | | | | -151 | | plantations (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Increase | | | | | | | -3,212 | | retention of HWP (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Increase | | | | | | | -2,247 | | trees outside forests (1000 tC02e/y) | | | | | | | 10 (5) | | Carbon sink potential - High - Reforest | | | | | | | -10,656 | | cropland (1000 tC02e/y) | | | | | | | 01.070 | | Carbon sink potential - High - Reforest | | | | | | | -21,079 | | pasture (1000 tC02e/y) | | | | | | | <u> </u> | | Carbon sink potential - High - All (not | | | | | | | -51,213 | | counting overlap) (1000 tC02e/y) | | | | | | | | | Carbon sink potential - High - Restore | | | | | | | -3,690 | | productivity (1000 tC02e/y) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 13.4 | | Low - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 289 | | Low - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | 1.510 | | Land impacted for carbon sink potential - | | | | | | | 1,512 | | Low - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | 070 | | Land impacted for carbon sink potential - | | | | | | | 27.9 | | Low - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Low - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 112 | | Low - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential -
Low - Reforest cropland (1000 hectares) | | | | | | | 352 | | | | | | | 1 | | | Table 73: REF scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|--------| | Land impacted for carbon sink potential - | | | | | | | 104 | | Low - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 740 | | Low - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,151 | | Low - Total impacted (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 20.1 | | Mid - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 298 | | Mid - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 2,730 | | Mid - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 41.9 | | Mid - Improve plantations (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | Mid - Increase retention of HWP (1000 | | | | | | | · | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 163 | | Mid - Increase trees outside forests (1000 | | | | | | | 100 | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 528 | | Mid - Reforest cropland (1000 hectares) | | | | | | | 320 | | Land impacted for carbon sink potential - | | | | | | | 751 | | | | | | | | | 151 | | Mid - Reforest pasture (1000 hectares) | | | | | | | 1 / 00 | | Land impacted for carbon sink potential - | | | | | | | 1,490 | | Mid - Restore productivity (1000 | | | | | | | | | hectares) | | | | | | | / 000 | | Land impacted for carbon sink potential - | | | | | | | 6,022 | | Mid - Total impacted (over 30 years) (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 26.8 | | High - Accelerate regeneration (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 308 | | High - Avoid deforestation (over 30 years) | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 3,947 | | High - Extend rotation length (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 55.7 | | High - Improve plantations (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 0 | | High - Increase retention of HWP (1000 | | | | | | | | | hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 214 | | High - Increase trees outside forests | | | | | | | | | (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 705 | | High - Reforest cropland (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | | | | | 599 | | High - Reforest pasture (1000 hectares) | | | | | | | | | Land impacted for carbon sink potential - | | | + | | | | 1,223 | | High - Restore productivity (1000 | | | | | | | .,0 | | | 1 | I | | | | | | Table 73: REF scenario - PILLAR 6: Land sinks - Forests (continued) | Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|------|------|------|------|------|------|-------| | Land impacted for carbon sink potential - | | | | | | | 7,077 | | High - Total impacted (over 30 years)
(1000 hectares) | | | | | | | |