

Net-Zero America - Michigan data

October 29, 2021 (updated November 17, 2023)

See the Data Sheet Guide for explanations of the contents of this document. The data herein underlie graphs and tables found in Princeton's Net-Zero America report:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Final Report, Princeton University, Princeton, NJ, 29 October 2021. Report available at https://net-zeroamerica.princeton.edu.

Contents

1	E+ scenario - IMPACTS - Health	1
2	E+ scenario - IMPACTS - Jobs	2
3	E+ scenario - IMPACTS - Fossil fuel industries	3
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	3
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	3
6	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	3
7	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	4
8	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	4
9	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	4
10	E+ scenario - PILLAR 2: Clean Electricity - Generation	5
11	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	5
12	E+ scenario - PILLAR 4: CCUS - CO2 capture	5
13	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	6
14	E+ scenario - PILLAR 4: CCUS - CO2 storage	6
15	E+ scenario - PILLAR 6: Land sinks - Forests	6
16	E+ scenario - PILLAR 6: Land sinks - Agriculture	8
17	E- scenario - IMPACTS - Health	9
18	E- scenario - IMPACTS - Jobs	10
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	12
20	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	12
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	12
22	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	12
23	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	12
24	E- scenario - PILLAR 2: Clean Electricity - Generating capacity	13
25	E- scenario - PILLAR 6: Land sinks - Forests	13
26	E- scenario - PILLAR 6: Land sinks - Agriculture	15
27	E+RE+ scenario - IMPACTS - Health	16
28	E+RE+ scenario - IMPACTS - Jobs	17
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	18
30	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand .	18
31	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	19
32	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	19
33	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	19
34	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	19
35	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	20
36	E+RE+ scenario - PILLAR 6: Land sinks - Forests	20
37	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	23
38	E+RE- scenario - IMPACTS - Health	23
39	E+RE- scenario - IMPACTS - Jobs	25
40	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	26
41	${\sf E+RE-scenario-PILLAR1:Efficiency/Electrification-Electricitydemand} \ \ . \ \ .$	26
42	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	26
43	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	26

44	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	27
45	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	27
46	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	27
47	E+RE- scenario - PILLAR 6: Land sinks - Forests	28
48	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	30
49	E-B+ scenario - IMPACTS - Health	31
50	E-B+ scenario - IMPACTS - Jobs	32
51	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	33
52	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	33
53	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	33
54	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	34
55	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	34
56	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	34
57	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	34
58	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	35
59	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	35
60	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	35
61	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	35
62	E-B+ scenario - PILLAR 6: Land sinks - Forests	36
63	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	38
64	REF scenario - IMPACTS - Health	39
65	REF scenario - IMPACTS - Jobs	40
66	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	41
67	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	42
68	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	42
69	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	42
70	REF scenario - PILLAR 2: Clean Electricity - Generating capacity	42
71	REF scenario - PILLAR 2: Clean Electricity - Generation	43
72	REF scenario - PILLAR 6: Land sinks - Forests - REF only	43
73	REF scenario - PILLAR 6: Land sinks - Forests	43

Table 1: E+ scenario - IMPACTS - Health

lable 1: E+ scenario - IMPACTS - Health							
Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		115	0.107	0.105	0.09	0.062	0.005
Fuel Comb - Electric Generation - Coal							
(deaths)							
Premature deaths from air pollution -		32.4	24.8	16.3	14.8	7.91	3.33
Fuel Comb - Electric Generation - Natural							
Gas (deaths)							
Premature deaths from air pollution -		300	278	210	121	55.5	22.4
Mobile - On-Road (deaths)						00.0	
Premature deaths from air pollution - Gas		26.2	23.9	17.9	10.4	4.88	2.12
Stations (deaths)		20.2	20.7	,	10.1		
Premature deaths from air pollution -		78.4	69.2	50.6	29.8	14.3	4.88
Fuel Comb - Residential - Natural Gas		10.4	07.2	30.0	27.0	14.5	4.00
(deaths)							
Premature deaths from air pollution -		3.85	3.16	2.18	1.27	0.525	0.164
		3.63	3.10	2.10	1.21	0.525	0.104
Fuel Comb - Residential - Oil (deaths)		0.00	0.70	0.05	F F0	0.00	1.07
Premature deaths from air pollution -		9.99	9.78	8.05	5.53	2.99	1.26
Fuel Comb - Residential - Other (deaths)							
Premature deaths from air pollution -		5.87	5.62	5.34	5.04	4.73	4.41
Fuel Comb - Comm/Institutional - Coal							
(deaths)							
Premature deaths from air pollution -		53.5	48.5	37.8	24.4	13.4	5.97
Fuel Comb - Comm/Institutional - Natural							
Gas (deaths)							
Premature deaths from air pollution -		4.24	3.51	2.69	1.9	1.27	0.802
Fuel Comb - Comm/Institutional - Oil							
(deaths)							
Premature deaths from air pollution -		3.76	3.14	2.54	1.97	1.44	0.937
Fuel Comb - Comm/Institutional - Other							
(deaths)							
Premature deaths from air pollution -		1.06	0.38	0.372	0.36	0.358	0.352
Industrial Processes - Coal Mining			5.55				
(deaths)							
Premature deaths from air pollution -		89	83.3	75.3	58.5	43.2	26.6
Industrial Processes - Oil & Gas		07	00.0	10.0	00.0	70.2	20.0
Production (deaths)							
Monetary damages from air pollution -	+	1,018	0.945	0.929	0.796	0.545	0.041
Fuel Comb - Electric Generation - Coal		1,010	0.743	0.727	0.170	0.545	0.041
(million \$2019)							
•		287	220	144	131	70.1	29.5
Monetary damages from air pollution -		201	220	144	131	70.1	29.5
Fuel Comb - Electric Generation - Natural							
Gas (million \$2019)		0 (71	0.770	10/0	1.070	/0/	100
Monetary damages from air pollution -		2,671	2,473	1,869	1,078	494	199
Mobile - On-Road (million \$2019)							
Monetary damages from air pollution -		232	212	158	92.2	43.2	18.7
Gas Stations (million \$2019)							
Monetary damages from air pollution -		694	613	449	264	127	43.2
Fuel Comb - Residential - Natural Gas							
(million \$2019)							
Monetary damages from air pollution -		34.1	28	19.3	11.2	4.66	1.45
Fuel Comb - Residential - Oil (million							
\$2019)							
Monetary damages from air pollution -		88.5	86.6	71.4	49	26.5	11.1
Fuel Comb - Residential - Other (million							
\$2019)							
Monetary damages from air pollution -		52	49.8	47.3	44.6	41.9	39
Fuel Comb - Comm/Institutional - Coal							- •
(million \$2019)							
Monetary damages from air pollution -		474	430	335	216	119	52.9
Fuel Comb - Comm/Institutional - Natural						,	J,
Gas (million \$2019)							
545 (mmon #2517)		[

Table 1: E+ scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		37.6	31	23.8	16.8	11.2	7.1
Fuel Comb - Comm/Institutional - Oil							
(million \$2019)							
Monetary damages from air pollution -		33.3	27.8	22.5	17.5	12.7	8.29
Fuel Comb - Comm/Institutional - Other							
(million \$2019)							
Monetary damages from air pollution -		9.37	3.36	3.28	3.17	3.16	3.11
Industrial Processes - Coal Mining							
(million \$2019)							
Monetary damages from air pollution -		791	740	669	519	383	237
Industrial Processes - Oil & Gas							
Production (million \$2019)							

Table 2: E+ scenario - IMPACTS - Jobs

Table 2: E+ Scenario - IMPACTS - Jobs							
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		775	973	712	420	131	1,044
By economic sector - Construction (jobs)		8,144	9,840	13,819	15,537	15,742	17,879
By economic sector - Manufacturing (jobs)		5,250	5,762	6,727	6,615	5,246	6,546
By economic sector - Mining (jobs)		4,478	3,235	2,220	1,394	828	473
By economic sector - Other (jobs)		434	582	1,383	1,494	1,960	2,162
By economic sector - Pipeline (jobs)		908	962	630	487	340	381
By economic sector - Professional (jobs)		4,949	5,538	7,568	8,942	9,660	12,673
By economic sector - Trade (jobs)		3,861	3,788	4,807	5,244	5,660	6,815
By economic sector - Utilities (jobs)		10,967	11,588	14,535	18,274	16,168	18,870
By resource sector - Biomass (jobs)		2,189	2,402	1,676	1,059	505	4,552
By resource sector - CO2 (jobs)		0	1,568	160	270	348	1,462
By resource sector - Coal (jobs)		1,528	195	0	0	0	0
By resource sector - Grid (jobs)		10,416	12,985	20,915	27,497	25,252	30,297
By resource sector - Natural Gas (jobs)		9,760	7,781	6,815	7,236	4,509	3,508
By resource sector - Nuclear (jobs)		2,009	1,739	1,712	1,685	1,659	1,633
By resource sector - Oil (jobs)		8,747	7,126	5,367	3,718	2,557	1,677
By resource sector - Solar (jobs)		942	1,248	5,493	4,082	6,440	5,738
By resource sector - Wind (jobs)		4,177	7,226	10,262	12,859	14,467	17,975
By education level - All sectors - High school diploma or less (jobs)		16,506	17,781	22,018	24,232	22,851	27,509
By education level - All sectors - Associates degree or some college (jobs)		12,137	13,056	16,524	18,744	17,956	21,267
By education level - All sectors - Bachelors degree (jobs)		8,706	8,934	10,788	11,976	11,521	13,889
By education level - All sectors - Masters or professional degree (jobs)		2,120	2,189	2,684	3,021	2,961	3,616
By education level - All sectors - Doctoral degree (jobs)		297	309	387	433	447	562
Related work experience - All sectors - None (jobs)		5,738	6,131	7,597	8,470	8,043	9,671
Related work experience - All sectors - Up to 1 year (jobs)		7,772	8,378	10,454	11,442	10,901	13,278
Related work experience - All sectors - 1 to 4 years (jobs)		14,444	15,259	18,845	21,067	20,135	24,091
Related work experience - All sectors - 4 to 10 years (jobs)		9,314	9,872	12,264	13,808	13,222	15,722
Related work experience - All sectors - Over 10 years (jobs)		2,499	2,630	3,241	3,619	3,436	4,080
On-the-Job Training - All sectors - None (jobs)		2,169	2,268	2,808	3,079	2,985	3,585
On-the-Job Training - All sectors - Up to 1 year (jobs)		26,471	27,986	34,396	38,049	36,180	43,766

Table 2. F+	scenario	- IMPACTS -	Inhe	(continued))
I a b i c Z . E T	Scellul lu	- IMPAGIS -	JUUS	ICUIILIIIUEUI	,

Item	2020	2025	2030	2035	2040	2045	2050
On-the-Job Training - All sectors - 1 to 4		8,216	8,827	11,107	12,595	12,040	14,185
years (jobs)							
On-the-Job Training - All sectors - 4 to 10		2,543	2,792	3,597	4,147	4,019	4,704
years (jobs)							
On-the-Job Training - All sectors - Over 10		369	396	493	536	514	601
years (jobs)							
On-Site or In-Plant Training - All sectors -		6,385	6,787	8,425	9,361	9,023	10,880
None (jobs)							
On-Site or In-Plant Training - All sectors -		24,007	25,385	31,251	34,614	32,900	39,681
Up to 1 year (jobs)							
On-Site or In-Plant Training - All sectors -		6,382	6,847	8,596	9,704	9,261	10,935
1 to 4 years (jobs)							
On-Site or In-Plant Training - All sectors -		2,662	2,888	3,666	4,195	4,047	4,745
4 to 10 years (jobs)							
On-Site or In-Plant Training - All sectors -		331	363	463	531	506	600
Over 10 years (jobs)							
Wage income - All (million \$2019)		2,283	2,435	3,030	3,441	3,319	4,019

Table 3: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Oil consumption - Annual (million bbls)		161	139	108	79	56.3	40.2
Oil consumption - Cumulative (million							3,351
bbls)							
Oil production - Annual (million bbls)		7.01	7.03	7.02	5.56	4.52	3.01
Natural gas consumption - Annual (tcf)		747	630	505	380	239	166
Natural gas consumption - Cumulative							15,217
(tcf)							
Natural gas production - Annual (tcf)		108	102	88.6	74.9	59.4	46.2

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	808	750	656	541	437	372	341
Final energy use - Residential (PJ)	562	524	489	423	347	286	245
Final energy use - Commercial (PJ)	316	311	299	277	251	231	220
Final energy use - Industry (PJ)	501	510	519	515	526	536	540

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		5.19	5.33	9.38	9.99	8.85	9.24
Cumulative 5-yr (billion \$2018)							

Table 6: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	38.9	724	1,409	3,808	6,207	8,123	10,040
Vehicle stocks - LDV – All others (1000 units)	8,372	7,972	7,571	5,518	3,464	1,960	456
Light-duty vehicle capital costs vs. REF - Cumulative 5-yr (million \$2018)		1,610	4,124	6,688	10,128	11,025	10,511
Public EV charging plugs - DC Fast (1000 units)	0.242		2.84		12.5		20.2
Public EV charging plugs - L2 (1000 units)	0.857		68.2		300		486

Table 7: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	2.17	6.93	32.9	84	93.6	94.2	94.2
Heat Pump (%)							
Sales of space heating units - Electric	5.77	9.31	7.39	3.21	2.39	2.33	2.44
Resistance (%)							
Sales of space heating units - Gas (%)	85.1	70.8	50	8.51	0.73	0.191	0.189
Sales of space heating units - Fossil (%)	6.93	12.9	9.76	4.29	3.31	3.24	3.18
Sales of water heating units - Electric	0	0.892	12.3	37.3	42	42.4	42.4
Heat Pump (%)							
Sales of water heating units - Electric	13.3	25.8	34.3	53.6	57.3	57.5	57.5
Resistance (%)							
Sales of water heating units - Gas Furnace	86.7	73.2	53.3	9.02	0.593	0.008	0
(%)							
Sales of water heating units - Other (%)	0.036	0.089	0.089	0.089	0.088	0.088	0.089
Sales of cooking units - Electric	35.7	49.4	91.3	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	64.3	50.6	8.66	0.436	0	0	0
Residential HVAC investment in 2020s vs.		7.71	9.81				
REF - Cumulative 5-yr (billion \$2018)							

Table 8: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.384	6.16	30.1	79.2	88.5	89.1	89.1
Heat Pump (%)							
Sales of space heating units - Electric	1.64	3.48	5.48	9.74	10.5	10.6	10.6
Resistance (%)							
Sales of space heating units - Gas (%)	95.4	88	64	11.1	1.06	0.368	0.359
Sales of space heating units - Fossil (%)	2.54	2.36	0.454	0.019	0	0	0
Sales of water heating units - Electric	0.161	1.36	14.4	43	48.4	48.8	48.8
Heat Pump (%)							
Sales of water heating units - Electric	1.64	4.19	17	45.3	50.6	51	51
Resistance (%)							
Sales of water heating units - Gas (%)	98.1	94.3	68.5	11.6	0.763	0.01	0
Sales of water heating units - Other (%)	0.093	0.184	0.185	0.186	0.185	0.186	0.186
Sales of cooking units - Electric	41	54.2	82.9	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	59	45.8	17.1	11.4	11.1	11.1	11.1
Commercial HVAC investment in 2020s -		29,341	32,040				
Cumulative 5-yr (million \$2018)							

Table 9: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	8,466	1,466	0	0	0	0	0
Installed thermal - Natural gas (MW)	7,052	11,221	12,546	14,510	19,696	17,345	16,712
Installed thermal - Nuclear (MW)	4,314	3,502	3,502	3,502	3,502	3,502	3,502
Installed renewables - Rooftop PV (MW)	79.1	119	158	208	269	339	419
Installed renewables - Solar - Base land use assumptions (MW)	76.9	76.9	183	3,593	4,957	8,685	10,405
Installed renewables - Wind - Base land use assumptions (MW)	2,232	2,562	10,468	17,038	25,452	26,285	27,329
Installed renewables - Solar - Constrained land use assumptions (MW)	76.9	76.9	894	1,806	4,938	8,676	12,797
Installed renewables - Wind - Constrained land use assumptions (MW)	2,562	2,562	9,565	11,360	11,512	11,770	12,060
Capital invested - Solar PV - Base (billion \$2018)		0	0.127	3.76	1.42	3.66	1.59
Capital invested - Wind - Base (billion \$2018)		0	10.5	8.15	9.94	0.935	1.1

Table 9: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Constrained (billion \$2018)		0.126	0.092	3.16	1.11	4.22	2.15
Capital invested - Wind - Constrained (billion \$2018)		0	9.73	1.89	0.139	0.288	4.17
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0

Table 10: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	155	155	336	6,145	8,467	14,755	17,683
Wind - Base land use assumptions (GWh)	9,704	9,704	35,628	56,685	83,224	86,111	89,686
OffshoreWind - Base land use	0	0	0	0	0	0	0
assumptions (GWh)							
Solar - Constrained land use assumptions	155	155	1,549	3,097	8,431	14,731	21,695
(GWh)							
Wind - Constrained land use assumptions	9,704	9,704	32,156	38,030	38,556	39,428	40,354
(GWh)							
OffshoreWind - Constrained land use	0	0	0	0	0	0	0
assumptions (GWh)							
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0

Table 11: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	14
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	2
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0
Conversion capital investment -		0	0	0	0	0	15,722
Cumulative 5-yr (million \$2018)							
Biomass purchases (million \$2018/y)		0	0	0	0	0	999

Table 12: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	3.24	3.35	6.64	6.84	24.3
Annual - BECCS (MMT)		0	0	0	0	0	17.2
Annual - NGCC (MMT)		0	0	0	0	0	0
Annual - Cement and lime (MMT)		0	3.24	3.35	6.64	6.84	7.07
Cumulative - All (MMT)		0	3.24	6.59	13.2	20.1	44.4
Cumulative - BECCS (MMT)		0	0	0	0	0	17.2
Cumulative - NGCC (MMT)		0	0	0	0	0	0
Cumulative - Cement and lime (MMT)		0	3.24	6.59	13.2	20.1	27.1

Table 13: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
Trunk (km)		0	437	437	437	437	437
Spur (km)		0	201	201	314	314	1,452
All (km)		0	638	638	751	751	1,890
Cumulative investment - Trunk (million		0	1,376	1,376	1,376	1,376	1,376
\$2018)							
Cumulative investment - Spur (million		0	202	206	316	322	1,226
\$2018)							
Cumulative investment - All (million		0	1,578	1,582	1,692	1,698	2,602
\$2018)							

Table 14: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
Annual (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 15: E+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate							-202
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-518
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-4,236
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-615
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-2,521
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-529
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest							-472
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-361
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,529
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-10,983
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-303
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-1,812
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-7,632
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-901
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-5,042
retention of HWP (1000 tCO2e/y)							-,-
Carbon sink potential - Mid - Increase							-1,020
trees outside forests (1000 tCO2e/y)							,
Carbon sink potential - Mid - Reforest							-708
cropland (1000 tC02e/y)							.00

Table 15: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	205
Carbon sink potential - Mid - Reforest							-2,56
pasture (1000 tC02e/y)							
Carbon sink potential - Mid - Restore							-3,03
productivity (1000 tC02e/y)							20.04
Carbon sink potential - Mid - All (not							-23,01
counting overlap) (1000 tC02e/y)							
Carbon sink potential - High - Accelerate							-40
regeneration (1000 tC02e/y)							0.10
Carbon sink potential - High - Avoid							-3,10
deforestation (1000 tC02e/y)							11.00
Carbon sink potential - High - Extend							-11,02
rotation length (1000 tC02e/y)							1.00
Carbon sink potential - High - Improve							-1,20
plantations (1000 tC02e/y)							75/
Carbon sink potential - High - Increase							-7,56
retention of HWP (1000 tC02e/y)							1 5
Carbon sink potential - High - Increase							-1,5
trees outside forests (1000 tC02e/y)							-94
Carbon sink potential - High - Reforest							-94
cropland (1000 tCO2e/y)							, 75
Carbon sink potential - High - Reforest							-4,75
pasture (1000 tC02e/y)							05.0
Carbon sink potential - High - All (not							-35,0
counting overlap) (1000 tC02e/y)							, , ,
Carbon sink potential - High - Restore							-4,53
productivity (1000 tCO2e/y)						+	3
and impacted for carbon sink potential -							3
Low - Accelerate regeneration (1000 nectares)							
•							20
and impacted for carbon sink potential -							39
Low - Avoid deforestation (over 30 years)							
(1000 hectares) Land impacted for carbon sink potential -							2,15
Low - Extend rotation length (1000							2,10
nectares)							
Land impacted for carbon sink potential -							22
Low - Improve plantations (1000							22
nectares)							
Land impacted for carbon sink potential -							
Low - Increase retention of HWP (1000							
nectares)							
Land impacted for carbon sink potential -						+	75.
Low - Increase trees outside forests							10.
(1000 hectares)							
Land impacted for carbon sink potential -							31.
Low - Reforest cropland (1000 hectares)							01.
Land impacted for carbon sink potential -						+	23.
Low - Reforest pasture (1000 hectares)							20.
Land impacted for carbon sink potential -						+	91
Low - Restore productivity (1000							, ,
nectares)							
and impacted for carbon sink potential -							3,84
Low - Total impacted (over 30 years)							5,04
1000 hectares)							
and impacted for carbon sink potential -							49
Mid - Accelerate regeneration (1000							49
nectares)							
Land impacted for carbon sink potential -							40
Mid - Avoid deforestation (over 30 years)							40
mu - Avoiu ucioi colation (UVC) 30 (Calio)			I				

Table 15: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							3,889
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							335
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							110
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							46.8
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							169
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,833
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,840
Mid - Total impacted (over 30 years) (1000							
hectares)							
Land impacted for carbon sink potential -							66
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							421
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							5,624
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							445
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							144
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							62.4
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,504
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							8,401
High - Total impacted (over 30 years)							
(1000 hectares)							

Table 16: E+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-699
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-2,176
deployment - Cropland measures (1000							
tCO2e/y)							

Table 16: E+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-74
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-2,949
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-699
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-4,144
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-148
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-4,990
deployment - Total (1000 tC02e/y)							
Land impacted for carbon sink - Moderate							292
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							1,392
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							135
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							1,818
deployment - Total (1000 hectares)							
Land impacted for carbon sink -							292
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							2,649
Aggressive deployment - Cropland							_,-,
measures (1000 hectares)							
Land impacted for carbon sink -							269
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							3,209
Aggressive deployment - Total (1000							0,207
hectares)							
neotai esj							
Table 17: E- scenario - IMPACTS - Health							
Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		115	0.107	0.105	0.09	0.062	0.005
Fuel Comb - Electric Generation - Coal							
(deaths)							
Premature deaths from air pollution -		29.3	18.6	8.12	3.77	1.15	0.776
Fuel Comb - Electric Generation - Natural							
Gas (deaths)							
Premature deaths from air pollution -		306	307	296	265	210	143
Mobile - On-Road (deaths)		300	301	270	200	210	140
Premature deaths from air pollution - Gas		26.7	26.8	25.6	22.8	17.9	12.2
Stations (deaths)		20.1	20.0	23.0	22.0	11.2	12.2
		70 /	70 F	/F /	E/ 7	/./. E	30.7
Premature deaths from air pollution -		78.6	72.5	65.6	56.7	44.5	30.7
Fuel Comb - Residential - Natural Gas							
(deaths)		0.00		0.75	0.00	0.75	4.7.
Premature deaths from air pollution -		3.92	3.8	3.65	3.23	2.45	1.64
Fuel Comb - Residential - Oil (deaths)							
Premature deaths from air pollution -		10	10.4	10.6	10.1	8.32	6.07
Fuel Comb - Residential - Other (deaths)							

Table 17: E- scenario - IMPACTS - Health (continued)

-						
2020						2050
	5.87	5.62	5.34	5.04	4.73	4.41
	53.6	51.6	49.1	44.4	37	28
	4.26	3.89	3.52	3.03	2.48	1.95
				_		
	3.76	3.36	2.98	2.61	2.25	1.91
	100			2.25		
	1.02	0.382	0.378	0.37	0.359	0.331
	88.8	80.1	69.1	60.1	52.9	37
	1,018	0.945	0.929	0.796	0.545	0.041
					10.0	
	259	165	71.9	33.4	10.2	6.87
	0.747	0.705	0.400	0.057	10/5	4.070
	2,716	2,725	2,633	2,356	1,865	1,273
			207	200	150	400
	237	237	227	202	159	108
	(0)	(10	500	500	005	070
	696	642	582	502	395	272
	04.7	00.7	00.7	00.7	01.0	11. (
	34.7	33.7	32.4	28.6	21.8	14.6
	00.0	00.1	00.0	00./	70.0	53.8
	88.9	92.1	93.9	89.4	73.8	53.8
	EO	/.0.0	472	1.1.7	/10	39
	52	49.6	41.3	44.6	41.9	39
	171	/.E7	1.21	202	200	248
	474	457	434	393	328	240
	277	3/. /.	21.2	26.8	21.0	17.3
	31.1	34.4	31.2	20.0	21.7	11.3
	33.3	20.8	26 /	22.1	10.0	16.9
	33.3	27.0	20.4	23.1	17.7	10.7
	9.00	2 27	2 2/.	3 27	2 17	2.92
	0.77	3.31	3.34	J.Z1	3.11	2.72
1	ı					
	789	711	61/1	53/,	470	270
	789	711	614	534	470	329
	2020	-	2020 2025 2030 5.87 5.62 53.6 51.6 4.26 3.89 3.76 3.36 1.02 0.382 88.8 80.1 1,018 0.945 259 165 2,716 2,725 237 237 696 642 34.7 33.7 88.9 92.1 52 49.8 474 457 37.7 34.4 33.3 29.8	2020 2025 2030 2035 5.87 5.62 5.34 53.6 51.6 49.1 4.26 3.89 3.52 3.76 3.36 2.98 1.02 0.382 0.378 88.8 80.1 69.1 1,018 0.945 0.929 259 165 71.9 2,716 2,725 2,633 237 237 227 696 642 582 34.7 33.7 32.4 88.9 92.1 93.9 52 49.8 47.3 474 457 434 37.7 34.4 31.2 33.3 29.8 26.4	2020 2025 2030 2035 2040 5.87 5.62 5.34 5.04 53.6 51.6 49.1 44.4 4.26 3.89 3.52 3.03 3.76 3.36 2.98 2.61 1.02 0.382 0.378 0.37 88.8 80.1 69.1 60.1 1,018 0.945 0.929 0.796 259 165 71.9 33.4 2,716 2,725 2,633 2,356 237 237 227 202 696 642 582 502 34.7 33.7 32.4 28.6 88.9 92.1 93.9 89.4 52 49.8 47.3 44.6 474 457 434 393 37.7 34.4 31.2 26.8 33.3 29.8 26.4 23.1	2020 2025 2030 2035 2040 2045 5.87 5.62 5.34 5.04 4.73 53.6 51.6 49.1 44.4 37 4.26 3.89 3.52 3.03 2.48 3.76 3.36 2.98 2.61 2.25 1.02 0.382 0.378 0.37 0.359 88.8 80.1 69.1 60.1 52.9 1,018 0.945 0.929 0.796 0.545 259 165 71.9 33.4 10.2 2,716 2,725 2,633 2,356 1,865 237 237 227 202 159 696 642 582 502 395 34.7 33.7 32.4 28.6 21.8 88.9 92.1 93.9 89.4 73.8 52 49.8 47.3 44.6 41.9 474 457 434 393

Table 18: E- scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		817	883	677	378	113	1,044
By economic sector - Construction (jobs)		7,668	9,554	11,542	12,529	15,566	18,933

Table 18: E- scenario - IMPACTS - Jobs (continued)

Table 18: E- Scellullo - IMPAG13 - Jubs (cui	шишеиј						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Manufacturing		5,240	5,701	5,955	5,961	6,198	7,807
(jobs)							
By economic sector - Mining (jobs)		4,555	3,286	2,420	1,762	1,246	724
By economic sector - Other (jobs)		398	537	1,143	1,224	1,995	2,281
By economic sector - Pipeline (jobs)		912	1,079	644	570	495	608
By economic sector - Professional (jobs)		4,765	5,161	6,575	7,606	9,818	13,792
By economic sector - Trade (jobs)		3,824	3,710	4,447	4,748	5,967	7,534
By economic sector - Utilities (jobs)		9,968	10,564	10,915	12,667	14,018	18,178
By resource sector - Biomass (jobs)		2,252	2,133	1,632	1,020	479	4,403
By resource sector - CO2 (jobs)		0	2,688	275	463	597	2,507
By resource sector - Coal (jobs)		1,768	317	0	0	0	0
By resource sector - Grid (jobs)		8,777	10,498	14,658	17,950	21,434	28,609
By resource sector - Natural Gas (jobs)		9,200	6,724	5,262	4,913	3,605	2,625
By resource sector - Nuclear (jobs)		2,009	1,739	1,712	1,685	1,659	1,633
By resource sector - Oil (jobs)		8,835	7,554	6,475	5,338	4,235	2,680
By resource sector - Solar (jobs)		981	1,300	4,521	3,571	7,045	5,810
By resource sector - Wind (jobs)		4,323	7,521	9,783	12,506	16,361	22,632
By education level - All sectors - High		15,859	17,045	18,602	19,625	22,692	29,072
school diploma or less (jobs)		.0,007	,.	.5,552	.,,525		_,,,,
By education level - All sectors -		11,562	12,477	13,772	14,980	17,692	22,482
Associates degree or some college (jobs)		.,,,,,,	,	,	,	,	,
By education level - All sectors -		8,397	8,572	9,296	9,964	11,608	14,872
Bachelors degree (jobs)		-,	-,	1,=10	7, 5	.,,,,,	,
By education level - All sectors - Masters		2,040	2,085	2,306	2,504	2,965	3,863
or professional degree (jobs)		,	,	,	,	,	.,
By education level - All sectors - Doctoral		288	295	341	374	458	611
degree (jobs)							
Related work experience - All sectors -		5,492	5,865	6,393	6,826	7,951	10,210
None (jobs)		-,	,,,,,	5,212	5,525	1,101	,
Related work experience - All sectors - Up		7,489	8,030	8,890	9,357	10,894	14,101
to 1 year (jobs)		, -	-,	.,.	,	-,-	, -
Related work experience - All sectors - 1		13,858	14,602	15,950	17,131	20,026	25,558
to 4 years (jobs)						-	•
Related work experience - All sectors - 4		8,910	9,455	10,339	11,183	13,116	16,686
to 10 years (jobs)							
Related work experience - All sectors -		2,397	2,521	2,744	2,950	3,429	4,344
Over 10 years (jobs)		-	.				
On-the-Job Training - All sectors - None		2,092	2,183	2,415	2,555	3,005	3,828
(jobs)							
On-the-Job Training - All sectors - Up to 1		25,476	26,798	29,255	31,118	36,147	46,518
year (jobs)							
On-the-Job Training - All sectors - 1 to 4		7,822	8,443	9,261	10,064	11,842	14,975
years (jobs)							
On-the-Job Training - All sectors - 4 to 10		2,399	2,665	2,963	3,262	3,899	4,930
years (jobs)							
On-the-Job Training - All sectors - Over 10		356	385	423	447	523	649
years (jobs)							
On-Site or In-Plant Training - All sectors -		6,139	6,509	7,165	7,672	9,030	11,604
None (jobs)							
On-Site or In-Plant Training - All sectors -		23,087	24,306	26,543	28,252	32,818	42,130
Up to 1 year (jobs)							
On-Site or In-Plant Training - All sectors -		6,086	6,551	7,186	7,776	9,128	11,549
1 to 4 years (jobs)							
On-Site or In-Plant Training - All sectors -		2,521	2,762	3,042	3,328	3,947	4,987
4 to 10 years (jobs)							
On-Site or In-Plant Training - All sectors -		313	346	382	418	492	631
Over 10 years (jobs)							
Wage income - All (million \$2019)		2,186	2,328	2,559	2,788	3,285	4,250
					_		-

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	809	757	687	629	583	530	468
Final energy use - Residential (PJ)	562	525	498	472	439	392	339
Final energy use - Commercial (PJ)	316	311	304	297	288	275	260
Final energy use - Industry (PJ)	501	510	521	522	536	546	548

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.21	4.23	5.79	5.99	8.36	8.82
Cumulative 5-yr (billion \$2018)							

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	30.1	232	433	1,366	2,300	4,365	6,431
Vehicle stocks - LDV – All others (1000 units)	8,406	8,406	8,406	7,974	7,541	5,811	4,081
Light-duty vehicle capital costs vs. REF - Cumulative 5-yr (million \$2018)		0	260	547	1,847	5,817	8,473
Public EV charging plugs - DC Fast (1000 units)	0.242		0.872		4.63		13
Public EV charging plugs - L2 (1000 units)	0.857		21		111		311

Table 22: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	2.17	5.44	8.25	17.5	39.1	65.5	80.9
Heat Pump (%)							
Sales of space heating units - Electric	5.77	9.38	9.14	8.42	6.65	4.54	3.4
Resistance (%)							
Sales of space heating units - Gas (%)	85.1	72	69.7	62.4	45	23.5	11
Sales of space heating units - Fossil (%)	6.93	13.2	12.9	11.7	9.27	6.38	4.68
Sales of water heating units - Electric	0	0.449	1.69	5.81	15.8	28.5	36
Heat Pump (%)							
Sales of water heating units - Electric	13.3	25.5	26.2	29.4	37	46.8	52.5
Resistance (%)							
Sales of water heating units - Gas Furnace	86.7	74	72	64.7	47.1	24.6	11.4
(%)							
Sales of water heating units - Other (%)	0.036	0.089	0.089	0.089	0.089	0.089	0.089
Sales of cooking units - Electric	35.5	37.1	43	58.6	80.3	93.6	98.3
Resistance (%)							
Sales of cooking units - Gas (%)	64.5	62.9	57	41.4	19.7	6.37	1.71
Residential HVAC investment in 2020s vs.		7.67	9.61				
REF - Cumulative 5-yr (billion \$2018)							

Table 23: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.384	4.93	7.53	16.1	36.4	61.5	76.2
Heat Pump (%)							
Sales of space heating units - Electric	1.64	3.4	3.62	4.32	6.01	8.19	9.45
Resistance (%)							
Sales of space heating units - Gas (%)	95.4	88.9	86.3	77.6	56.5	29.8	14.1
Sales of space heating units - Fossil (%)	2.54	2.74	2.58	1.99	1.1	0.499	0.282
Sales of water heating units - Electric	0.161	0.855	2.27	6.98	18.4	32.9	41.5
Heat Pump (%)							
Sales of water heating units - Electric	1.64	3.69	5.06	9.72	21	35.3	43.8
Resistance (%)							
Sales of water heating units - Gas (%)	98.1	95.3	92.5	83.1	60.4	31.6	14.6
Sales of water heating units - Other (%)	0.093	0.184	0.185	0.186	0.185	0.186	0.186

Table 23: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of cooking units - Electric	41	45.8	49.8	60.5	75.4	84.5	87.7
Resistance (%)							
Sales of cooking units - Gas (%)	59	54.2	50.2	39.5	24.6	15.5	12.3
Commercial HVAC investment in 2020s -		29,338	32,023				
Cumulative 5-yr (million \$2018)							

Table 24: E- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	8,466	1,466	0	0	0	0	0
Installed thermal - Natural gas (MW)	7,052	8,327	8,254	7,727	5,417	4,762	4,919
Installed thermal - Nuclear (MW)	4,314	3,502	3,502	3,502	3,502	3,502	3,502

Table 25: E- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate regeneration (1000 tC02e/y)							-202
Carbon sink potential - Low - Avoid deforestation (1000 tC02e/y)							-518
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-4,236
Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)							-615
Carbon sink potential - Low - Increase retention of HWP (1000 tC02e/y)							-2,521
Carbon sink potential - Low - Increase							-529
trees outside forests (1000 tC02e/y) Carbon sink potential - Low - Reforest							-472
cropland (1000 tCO2e/y) Carbon sink potential - Low - Reforest							-361
pasture (1000 tCO2e/y) Carbon sink potential - Low - Restore							-1,529
productivity (1000 tCO2e/y) Carbon sink potential - Low - All (not							-10,983
counting overlap) (1000 tCO2e/y) Carbon sink potential - Mid - Accelerate							-303
regeneration (1000 tC02e/y) Carbon sink potential - Mid - Avoid							-1,812
deforestation (1000 tCO2e/y) Carbon sink potential - Mid - Extend							-7,632
rotation length (1000 tCO2e/y) Carbon sink potential - Mid - Improve							-901
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase retention of HWP (1000 tC02e/y)							-5,042
Carbon sink potential - Mid - Increase trees outside forests (1000 tC02e/y)							-1,020
Carbon sink potential - Mid - Reforest cropland (1000 tCO2e/y)							-708
Carbon sink potential - Mid - Reforest pasture (1000 tCO2e/y)							-2,560
Carbon sink potential - Mid - Restore productivity (1000 tC02e/y)							-3,033
Carbon sink potential - Mid - All (not counting overlap) (1000 tC02e/y)							-23,011
Carbon sink potential - High - Accelerate							-403
regeneration (1000 tC02e/y) Carbon sink potential - High - Avoid							-3,106
deforestation (1000 tCO2e/y)							

Table 25: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Combon sink not article Wints Fixtured	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Extend							-11,028
rotation length (1000 tC02e/y)							4.000
Carbon sink potential - High - Improve							-1,209
plantations (1000 tC02e/y)							75/0
Carbon sink potential - High - Increase							-7,563
retention of HWP (1000 tC02e/y)							4 544
Carbon sink potential - High - Increase							-1,511
trees outside forests (1000 tC02e/y)							0//
Carbon sink potential - High - Reforest							-944
cropland (1000 tC02e/y)							/ 750
Carbon sink potential - High - Reforest							-4,759
pasture (1000 tC02e/y)							05.074
Carbon sink potential - High - All (not							-35,061
counting overlap) (1000 tC02e/y)							
Carbon sink potential - High - Restore							-4,537
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							33
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							395
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,155
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							223
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							75.6
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							31.2
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							23.4
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							910
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,845
Low - Total impacted (over 30 years)							·
(1000 hectares)							
Land impacted for carbon sink potential -							49.5
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							408
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,889
Mid - Extend rotation length (1000							-,
hectares)							
Land impacted for carbon sink potential -				+			335
Mid - Improve plantations (1000 hectares)							000
Land impacted for carbon sink potential -				+			0
Mid - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							110
Mid - Increase trees outside forests (1000							110
PRODUCTION EASE OF CESTON SIDE TO CESTS TO UUU T						I .	

Table 25: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							46.8
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							169
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,833
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,840
Mid - Total impacted (over 30 years) (1000							
hectares)							
Land impacted for carbon sink potential -							66
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							421
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							5,624
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							445
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							144
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							62.4
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,504
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							8,401
High - Total impacted (over 30 years)							
(1000 hectares)							

Table 26: E- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-699
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-2,176
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-74
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-2,949
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-699
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-4,144
deployment - Cropland measures (1000							
tCO2e/y)							

Table 26: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-148
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-4,990
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink - Moderate							292
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							1,392
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							135
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							1,818
deployment - Total (1000 hectares)							
Land impacted for carbon sink -							292
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							2,649
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							269
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							3,209
Aggressive deployment - Total (1000							
hectares)							

Table 27: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Fuel Comb - Electric Generation - Coal (deaths)		115	0.107	0.105	0.09	0.062	0.005
Premature deaths from air pollution - Fuel Comb - Electric Generation - Natural Gas (deaths)		28	20.4	11.8	8.18	2.71	0.698
Premature deaths from air pollution - Mobile - On-Road (deaths)		300	278	210	121	55.5	22.4
Premature deaths from air pollution - Gas Stations (deaths)		26.2	23.9	17.9	10.4	4.88	2.12
Premature deaths from air pollution - Fuel Comb - Residential - Natural Gas (deaths)		78.4	69.2	50.6	29.8	14.3	4.88
Premature deaths from air pollution - Fuel Comb - Residential - Oil (deaths)		3.85	3.16	2.18	1.27	0.525	0.164
Premature deaths from air pollution - Fuel Comb - Residential - Other (deaths)		9.99	9.78	8.05	5.53	2.99	1.26
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Coal (deaths)		5.87	5.62	5.34	5.04	4.73	4.41
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (deaths)		53.5	48.5	37.8	24.4	13.4	5.97
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths)		4.24	3.51	2.69	1.9	1.27	0.802
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths)		3.76	3.14	2.54	1.97	1.44	0.937

Table 27: E+RE+ scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Industrial Processes - Coal Mining (deaths)		1.18	0.38	0.371	0.358	0.357	0.305
Premature deaths from air pollution - Industrial Processes - Oil & Gas Production (deaths)		87.5	82	70.3	50.5	30.7	4.48
Monetary damages from air pollution - Fuel Comb - Electric Generation - Coal (million \$2019)		1,018	0.945	0.929	0.796	0.545	0.041
Monetary damages from air pollution - Fuel Comb - Electric Generation - Natural Gas (million \$2019)		248	181	104	72.5	24	6.19
Monetary damages from air pollution - Mobile - On-Road (million \$2019)		2,671	2,473	1,869	1,078	494	199
Monetary damages from air pollution - Gas Stations (million \$2019)		232	212	158	92.2	43.2	18.7
Monetary damages from air pollution - Fuel Comb - Residential - Natural Gas (million \$2019)		694	613	449	264	127	43.2
Monetary damages from air pollution - Fuel Comb - Residential - Oil (million \$2019)		34.1	28	19.3	11.2	4.66	1.45
Monetary damages from air pollution - Fuel Comb - Residential - Other (million \$2019)		88.5	86.6	71.4	49	26.5	11.1
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Coal (million \$2019)		52	49.8	47.3	44.6	41.9	39
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (million \$2019)		474	430	335	216	119	52.9
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Oil (million \$2019)		37.6	31	23.8	16.8	11.2	7.1
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Other (million \$2019)		33.3	27.8	22.5	17.5	12.7	8.29
Monetary damages from air pollution - Industrial Processes - Coal Mining (million \$2019)		10.4	3.36	3.28	3.16	3.15	2.7
Monetary damages from air pollution - Industrial Processes - Oil & Gas Production (million \$2019)		777	729	625	448	272	39.8

Table 28: E+RE+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		776	984	711	399	122	1,040
By economic sector - Construction (jobs)		7,887	11,383	17,729	22,280	47,650	33,875
By economic sector - Manufacturing		5,402	6,491	8,408	8,741	11,344	12,042
(jobs)							
By economic sector - Mining (jobs)		4,476	3,164	2,045	1,156	584	84.4
By economic sector - Other (jobs)		420	1,013	2,152	3,155	9,762	5,267
By economic sector - Pipeline (jobs)		884	738	520	337	196	76.6
By economic sector - Professional (jobs)		4,850	6,571	9,670	12,787	25,366	22,922
By economic sector - Trade (jobs)		3,849	4,367	6,003	7,608	16,292	12,940
By economic sector - Utilities (jobs)		10,316	11,632	16,424	19,721	32,606	30,544
By resource sector - Biomass (jobs)		2,116	2,458	1,651	1,019	478	4,673
By resource sector - CO2 (jobs)		0	0	0	0	0	0
By resource sector - Coal (jobs)		1,768	317	0	0	0	0
By resource sector - Grid (jobs)		9,671	14,560	25,410	32,280	60,750	57,510

Table 28: E+RE+ scenario - IMPACTS - Jobs (continued)

Item	2020	2025	2030	2035	2040	2045	2050
By resource sector - Natural Gas (jobs)		8,929	7,463	5,796	5,132	3,451	2,985
By resource sector - Nuclear (jobs)		2,009	1,739	1,712	1,458	656	0
By resource sector - Oil (jobs)		8,748	7,047	5,164	3,251	1,871	116
By resource sector - Solar (jobs)		1,036	4,550	10,467	14,587	52,097	18,964
By resource sector - Wind (jobs)		4,584	8,209	13,462	18,457	24,618	34,545
By education level - All sectors - High		16,153	19,501	26,780	31,696	60,260	48,934
school diploma or less (jobs)							
By education level - All sectors -		11,818	14,313	20,163	24,466	46,715	38,280
Associates degree or some college (jobs)							
By education level - All sectors -		8,527	9,767	12,994	15,486	28,454	24,260
Bachelors degree (jobs)							
By education level - All sectors - Masters		2,072	2,410	3,247	3,938	7,348	6,330
or professional degree (jobs)							
By education level - All sectors - Doctoral		291	351	478	596	1,146	987
degree (jobs)							
Related work experience - All sectors -		5,593	6,696	9,210	11,012	20,968	17,190
None (jobs)							
Related work experience - All sectors - Up		7,626	9,290	12,814	15,228	29,134	23,737
to 1 year (jobs)							
Related work experience - All sectors - 1		14,114	16,698	22,842	27,363	51,575	42,718
to 4 years (jobs)							
Related work experience - All sectors - 4		9,084	10,786	14,873	17,908	33,646	27,929
to 10 years (jobs)							
Related work experience - All sectors -		2,444	2,873	3,922	4,671	8,599	7,218
Over 10 years (jobs)							
On-the-Job Training - All sectors - None		2,126	2,517	3,437	4,115	7,948	6,397
(jobs)							
On-the-Job Training - All sectors - Up to 1		25,927	30,704	41,726	49,600	92,968	77,447
year (jobs)							
On-the-Job Training - All sectors - 1 to 4		7,991	9,635	13,501	16,332	31,030	25,384
years (jobs)						10 (0=	
On-the-Job Training - All sectors - 4 to 10		2,454	3,048	4,389	5,412	10,607	8,482
years (jobs)						1.000	
On-the-Job Training - All sectors - Over 10		363	440	609	723	1,370	1,081
years (jobs)		(0/0	7.05	10.001	10.000	00.507	10.000
On-Site or In-Plant Training - All sectors -		6,249	7,495	10,301	12,383	23,536	19,383
None (jobs)		00.500	07.000	07.000	45.070	04.400	70.077
On-Site or In-Plant Training - All sectors -		23,502	27,830	37,898	45,072	84,603	70,277
Up to 1 year (jobs)		(015	7,00	10 / / 0	10 (00	00.07.7	10.5//
On-Site or In-Plant Training - All sectors -		6,215	7,482	10,449	12,600	23,944	19,564
1 to 4 years (jobs)		0.57	0.1/4	, , , , ,	F / / 2	10.507	0 / 00
On-Site or In-Plant Training - All sectors -		2,574	3,141	4,451	5,443	10,536	8,488
4 to 10 years (jobs)		000	005	F/0	/05	1.000	1.070
On-Site or In-Plant Training - All sectors -		320	395	562	685	1,303	1,079
Over 10 years (jobs)		0.007	0 / / 0	0.440	/ /15	0.007	7.050
Wage income - All (million \$2019)		2,226	2,648	3,649	4,415	8,337	7,059

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	808	750	656	541	437	372	341
Final energy use - Residential (PJ)	562	524	489	423	347	286	245
Final energy use - Commercial (PJ)	316	311	299	277	251	231	220
Final energy use - Industry (PJ)	501	510	519	515	526	536	540

Table 30: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		5.19	5.33	9.38	9.99	8.85	9.24
Cumulative 5-yr (billion \$2018)							

Table 31: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	Table 31: <i>E+RE+ scenario</i> -	- PILLAR 1: Efficienc	y/Electrification -	Transportation
--	-----------------------------------	-----------------------	---------------------	----------------

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	38.9	724	1,409	3,808	6,207	8,123	10,040
Vehicle stocks - LDV – All others (1000	8,372	7,972	7,571	5,518	3,464	1,960	456
units)							
Light-duty vehicle capital costs vs. REF -		1,610	4,124	6,688	10,128	11,025	10,511
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.242		2.84		12.5		20.2
units)							
Public EV charging plugs - L2 (1000 units)	0.857		68.2		300		486

Table 32: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	2.17	6.93	32.9	84	93.6	94.2	94.2
Heat Pump (%)							
Sales of space heating units - Electric	5.77	9.31	7.39	3.21	2.39	2.33	2.44
Resistance (%)							
Sales of space heating units - Gas (%)	85.1	70.8	50	8.51	0.73	0.191	0.189
Sales of space heating units - Fossil (%)	6.93	12.9	9.76	4.29	3.31	3.24	3.18
Sales of water heating units - Electric	0	0.892	12.3	37.3	42	42.4	42.4
Heat Pump (%)							
Sales of water heating units - Electric	13.3	25.8	34.3	53.6	57.3	57.5	57.5
Resistance (%)							
Sales of water heating units - Gas Furnace	86.7	73.2	53.3	9.02	0.593	0.008	0
(%)							
Sales of water heating units - Other (%)	0.036	0.089	0.089	0.089	0.088	0.088	0.089
Sales of cooking units - Electric	35.7	49.4	91.3	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	64.3	50.6	8.66	0.436	0	0	0
Residential HVAC investment in 2020s vs.		7.71	9.81				
REF - Cumulative 5-yr (billion \$2018)							

Table 33: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

	, =		• • • • • • • • • • • • • • • • • • • •				
Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.384	6.16	30.1	79.2	88.5	89.1	89.1
Heat Pump (%)							
Sales of space heating units - Electric	1.64	3.48	5.48	9.74	10.5	10.6	10.6
Resistance (%)							
Sales of space heating units - Gas (%)	95.4	88	64	11.1	1.06	0.368	0.359
Sales of space heating units - Fossil (%)	2.54	2.36	0.454	0.019	0	0	0
Sales of water heating units - Electric	0.161	1.36	14.4	43	48.4	48.8	48.8
Heat Pump (%)							
Sales of water heating units - Electric	1.64	4.19	17	45.3	50.6	51	51
Resistance (%)							
Sales of water heating units - Gas (%)	98.1	94.3	68.5	11.6	0.763	0.01	0
Sales of water heating units - Other (%)	0.093	0.184	0.185	0.186	0.185	0.186	0.186
Sales of cooking units - Electric	41	54.2	82.9	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	59	45.8	17.1	11.4	11.1	11.1	11.1
Commercial HVAC investment in 2020s -		29,341	32,040				
Cumulative 5-yr (million \$2018)							

Table 34: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	8,466	2,384	0	0	0	0	0
Installed thermal - Natural gas (MW)	7,052	8,407	11,569	13,872	13,464	14,125	17,370

Table 34: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Nuclear (MW)	4,314	3,502	3,502	3,502	2,350	0	0
Installed renewables - Rooftop PV (MW)	79.1	119	158	208	269	339	419
Installed renewables - Solar - Base land	76.9	76.9	2,325	8,916	17,217	55,580	58,136
use assumptions (MW)							
Installed renewables - Wind - Base land	2,562	2,562	13,701	21,814	27,363	28,486	30,287
use assumptions (MW)							
Installed renewables - Solar -	76.9	183	558	7,837	19,135	40,576	46,673
Constrained land use assumptions (MW)							
Installed renewables - Wind - Constrained	2,854	2,854	11,126	11,687	12,028	12,449	31,409
land use assumptions (MW)							
Installed renewables - Offshore Wind -	0	0	0	0	0	0	0
Constrained land use assumptions (MW)							
Capital invested - Solar PV - Base (billion		0	2.69	7.27	8.63	37.6	2.37
\$2018)							
Capital invested - Wind - Base (billion		0	14.8	10.1	6.56	1.26	1.91
\$2018)							

Table 35: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	155	155	3,984	15,147	29,199	94,231	98,602
Wind - Base land use assumptions (GWh)	9,704	9,704	46,048	71,803	89,535	93,442	99,583
OffshoreWind - Base land use assumptions (GWh)	0	0	0	0	0	0	0
Solar - Constrained land use assumptions (GWh)	310	672	1,958	26,565	64,735	137,400	158,179
Wind - Constrained land use assumptions (GWh)	19,408	19,408	72,440	76,306	78,636	81,297	203,238
OffshoreWind - Constrained land use assumptions (GWh)	0	0	0	0	0	0	0

Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate							-202
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-518
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-4,236
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-615
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-2,521
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-529
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-472
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-361
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,529
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-10,983
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-303
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-1,812
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-7,632
rotation length (1000 tCO2e/y)							

Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Improve							-901
plantations (1000 tCO2e/y)							50/0
Carbon sink potential - Mid - Increase							-5,042
retention of HWP (1000 tCO2e/y)							1.000
Carbon sink potential - Mid - Increase trees outside forests (1000 tC02e/y)							-1,020
Carbon sink potential - Mid - Reforest							-708
cropland (1000 tCO2e/y)							-708
Carbon sink potential - Mid - Reforest							-2,560
pasture (1000 tCO2e/y)							-2,500
Carbon sink potential - Mid - Restore							-3,033
productivity (1000 tCO2e/y)							-3,033
Carbon sink potential - Mid - All (not	-						-23,011
counting overlap) (1000 tC02e/y)							-23,011
Carbon sink potential - High - Accelerate	-						-403
regeneration (1000 tCO2e/y)							-403
Carbon sink potential - High - Avoid							-3,106
deforestation (1000 tC02e/y)							-3,100
Carbon sink potential - High - Extend							11 000
•							-11,028
rotation length (1000 tCO2e/y)							-1,209
Carbon sink potential - High - Improve							-1,209
plantations (1000 tC02e/y)							75/0
Carbon sink potential - High - Increase							-7,563
retention of HWP (1000 tC02e/y)							1 -11
Carbon sink potential - High - Increase							-1,511
trees outside forests (1000 tC02e/y)							0//
Carbon sink potential - High - Reforest							-944
cropland (1000 tCO2e/y)							/ 750
Carbon sink potential - High - Reforest							-4,759
pasture (1000 tC02e/y)							05.071
Carbon sink potential - High - All (not							-35,061
counting overlap) (1000 tC02e/y)							/ 507
Carbon sink potential - High - Restore							-4,537
productivity (1000 tCO2e/y)							0.0
Land impacted for carbon sink potential -							33
Low - Accelerate regeneration (1000							
hectares)							005
Land impacted for carbon sink potential -							395
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							0.155
Land impacted for carbon sink potential -							2,155
Low - Extend rotation length (1000							
hectares)							000
Land impacted for carbon sink potential -							223
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							75.6
Low - Increase trees outside forests							
(1000 hectares)							24.2
Land impacted for carbon sink potential -							31.2
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							23.4
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							910
Low - Restore productivity (1000							
hectares)							

Table 36: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -		====				•	3,845
Low - Total impacted (over 30 years)							0,0 .0
(1000 hectares)							
Land impacted for carbon sink potential -						+	49.5
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							408
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,889
Mid - Extend rotation length (1000							0,007
hectares)							
Land impacted for carbon sink potential -						+	335
Mid - Improve plantations (1000 hectares)							000
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							110
Mid - Increase trees outside forests (1000							110
hectares)							
Land impacted for carbon sink potential -							46.8
·							40.8
Mid - Reforest cropland (1000 hectares)							1/0
Land impacted for carbon sink potential -							169
Mid - Reforest pasture (1000 hectares)							1.000
Land impacted for carbon sink potential -							1,833
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,840
Mid - Total impacted (over 30 years) (1000							
hectares)							
Land impacted for carbon sink potential -							66
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							421
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							5,624
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							445
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							144
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							62.4
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,504
High - Restore productivity (1000							•
hectares)							
Land impacted for carbon sink potential -			+				8,401
High - Total impacted (over 30 years)							5, 101

Table 37: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-699
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-2,176
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-74
deployment - Permanent conservation							
cover (1000 tC02e/y)							0.040
Carbon sink potential - Moderate							-2,949
deployment - Total (1000 tC02e/y)							
Carbon sink potential - Aggressive							-699
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-4,144
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-148
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-4,990
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink - Moderate							292
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							1,392
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							135
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							1,818
deployment - Total (1000 hectares)							
Land impacted for carbon sink -							292
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							2,649
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							269
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							3,209
Aggressive deployment - Total (1000							•
hectares)							

Table 38: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		115	0.107	0.105	0.09	0.062	0.005
Fuel Comb - Electric Generation - Coal							
(deaths)							
Premature deaths from air pollution -		31.9	24.2	30.6	22.5	7.76	2.49
Fuel Comb - Electric Generation - Natural							
Gas (deaths)							
Premature deaths from air pollution -		300	278	210	121	55.5	22.4
Mobile - On-Road (deaths)							
Premature deaths from air pollution - Gas		26.2	23.9	17.9	10.4	4.88	2.12
Stations (deaths)							

Table 38: E+RE- scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Fuel Comb - Residential - Natural Gas		78.4	69.2	50.6	29.8	14.3	4.88
(deaths) Premature deaths from air pollution - Fuel Comb - Residential - Oil (deaths)		3.85	3.16	2.18	1.27	0.525	0.164
Premature deaths from air pollution - Fuel Comb - Residential - Other (deaths)		9.99	9.78	8.05	5.53	2.99	1.26
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Coal (deaths)		5.87	5.62	5.34	5.04	4.73	4.41
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (deaths)		53.5	48.5	37.8	24.4	13.4	5.97
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths)		4.24	3.51	2.69	1.9	1.27	0.802
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths)		3.76	3.14	2.54	1.97	1.44	0.937
Premature deaths from air pollution - Industrial Processes - Coal Mining (deaths)		0.951	0.379	0.372	0.359	0.358	0.305
Premature deaths from air pollution - Industrial Processes - Oil & Gas Production (deaths)		90.1	86.9	84.7	71.5	59.5	44.1
Monetary damages from air pollution - Fuel Comb - Electric Generation - Coal (million \$2019)		1,018	0.945	0.929	0.796	0.545	0.041
Monetary damages from air pollution - Fuel Comb - Electric Generation - Natural Gas (million \$2019)		283	215	271	199	68.7	22.1
Monetary damages from air pollution - Mobile - On-Road (million \$2019)		2,671	2,473	1,869	1,078	494	199
Monetary damages from air pollution - Gas Stations (million \$2019)		232	212	158	92.2	43.2	18.7
Monetary damages from air pollution - Fuel Comb - Residential - Natural Gas (million \$2019)		694	613	449	264	127	43.2
Monetary damages from air pollution - Fuel Comb - Residential - Oil (million \$2019)		34.1	28	19.3	11.2	4.66	1.45
Monetary damages from air pollution - Fuel Comb - Residential - Other (million \$2019)		88.5	86.6	71.4	49	26.5	11.1
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Coal (million \$2019)		52	49.8	47.3	44.6	41.9	39
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (million \$2019)		474	430	335	216	119	52.9
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Oil (million \$2019)		37.6	31	23.8	16.8	11.2	7.1
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Other (million \$2019)		33.3	27.8	22.5	17.5	12.7	8.29
Monetary damages from air pollution - Industrial Processes - Coal Mining (million \$2019)		8.39	3.35	3.28	3.17	3.16	2.69

Table 38: E+RE- scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		800	771	752	635	528	392
Industrial Processes - Oil & Gas							
Production (million \$2019)							

Table 39: E+RE- scenario - IMPACTS - Jobs

Table 39: E+RE- Scenario - IMPACTS - Jobs							
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		803	898	668	391	126	1,046
By economic sector - Construction (jobs)		7,500	8,817	8,963	9,877	11,579	13,344
By economic sector - Manufacturing		4,716	4,269	4,117	3,938	4,110	4,291
(jobs)		4 400	0.007	0.417	1.00	1.077	705
By economic sector - Mining (jobs)		4,492	3,324	2,417	1,626	1,077	705
By economic sector - Other (jobs)		377	425	538	713	882	1,006
By economic sector - Pipeline (jobs)		933	1,189	772	692	583	744
By economic sector - Professional (jobs)		4,500	4,337	5,303	5,295	8,063	9,199
By economic sector - Trade (jobs)		3,607	3,270	3,390	3,287	4,147	4,477
By economic sector - Utilities (jobs)		9,796	10,624	15,477	13,588	28,243	26,231
By resource sector - Biomass (jobs)		2,134	2,133	1,613	1,035	508	4,444
By resource sector - CO2 (jobs)		0	3,037	311	523	674	2,832
By resource sector - Coal (jobs)		1,346	102	0	0	0	0
By resource sector - Grid (jobs)		8,550	9,566	14,156	16,177	20,170	24,053
By resource sector - Natural Gas (jobs)		9,440	8,224	7,458	7,998	6,827	5,642
By resource sector - Nuclear (jobs)		2,009	1,739	7,445	2,844	20,074	14,129
By resource sector - Oil (jobs)		8,746	7,126	5,367	3,718	2,658	1,921
By resource sector - Solar (jobs)		817	763	749	1,207	1,307	1,277
By resource sector - Wind (jobs)		3,683	4,463	4,547	5,907	6,591	6,744
By education level - All sectors - High		15,259	15,703	17,093	16,346	23,052	24,690
school diploma or less (jobs)							
By education level - All sectors -		11,134	11,477	12,764	12,514	18,093	18,869
Associates degree or some college (jobs)							
By education level - All sectors -		8,086	7,813	9,164	8,210	13,627	13,476
Bachelors degree (jobs)							
By education level - All sectors - Masters		1,968	1,899	2,299	2,052	3,521	3,491
or professional degree (jobs)							
By education level - All sectors - Doctoral		277	262	327	286	517	516
degree (jobs)							
Related work experience - All sectors -		5,297	5,427	5,963	5,725	8,218	8,712
None (jobs)							
Related work experience - All sectors - Up		7,183	7,307	8,124	7,634	11,147	11,869
to 1 year (jobs)							
Related work experience - All sectors - 1		13,345	13,422	15,103	14,256	21,495	22,157
to 4 years (jobs)							
Related work experience - All sectors - 4		8,591	8,697	9,801	9,333	14,068	14,423
to 10 years (jobs)							
Related work experience - All sectors -		2,308	2,301	2,656	2,462	3,881	3,881
Over 10 years (jobs)							
On-the-Job Training - All sectors - None		2,013	1,989	2,292	2,084	3,333	3,369
(jobs)		21.150	21.122		25 (25		
On-the-Job Training - All sectors - Up to 1		24,478	24,492	27,522	25,697	38,668	40,172
year (jobs)					2 / 22	10.100	
On-the-Job Training - All sectors - 1 to 4		7,557	7,815	8,716	8,488	12,428	12,859
years (jobs)		2.22/					
On-the-Job Training - All sectors - 4 to 10		2,334	2,510	2,728	2,779	3,823	4,088
years (jobs)					2 (1		
On-the-Job Training - All sectors - Over 10		342	347	388	361	556	555
years (jobs)		F 000	F 00 /	/ 74 /	(001	0.404	00/1
On-Site or In-Plant Training - All sectors -		5,903	5,926	6,716	6,281	9,684	9,961
None (jobs)		00.400	00.050	05.010	00.400	05.450	0/ /77
On-Site or In-Plant Training - All sectors -		22,193	22,252	25,012	23,400	35,152	36,477
Up to 1 year (jobs)							

Table 39: E+RE- scenario - IMPACTS - Jobs (continued)

Item	2020	2025	2030	2035	2040	2045	2050
On-Site or In-Plant Training - All sectors -		5,875	6,055	6,735	6,537	9,529	9,890
1 to 4 years (jobs)							
On-Site or In-Plant Training - All sectors -		2,451	2,599	2,837	2,836	3,978	4,206
4 to 10 years (jobs)							
On-Site or In-Plant Training - All sectors -		303	321	346	353	466	508
Over 10 years (jobs)							
Wage income - All (million \$2019)		2,112	2,154	2,491	2,358	3,720	3,843

Table 40: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	808	750	656	541	437	372	341
Final energy use - Residential (PJ)	562	524	489	423	347	286	245
Final energy use - Commercial (PJ)	316	311	299	277	251	231	220
Final energy use - Industry (PJ)	501	510	519	515	526	536	540

Table 41: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		5.19	5.33	9.38	9.99	8.85	9.24
Cumulative 5-yr (billion \$2018)							

Table 42: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	38.9	724	1,409	3,808	6,207	8,123	10,040
Vehicle stocks - LDV – All others (1000	8,372	7,972	7,571	5,518	3,464	1,960	456
units)							
Light-duty vehicle capital costs vs. REF -		1,610	4,124	6,688	10,128	11,025	10,511
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.242		2.84		12.5		20.2
units)							
Public EV charging plugs - L2 (1000 units)	0.857		68.2		300		486

Table 43: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	2.17	6.93	32.9	84	93.6	94.2	94.2
Heat Pump (%)							
Sales of space heating units - Electric	5.77	9.31	7.39	3.21	2.39	2.33	2.44
Resistance (%)							
Sales of space heating units - Gas (%)	85.1	70.8	50	8.51	0.73	0.191	0.189
Sales of space heating units - Fossil (%)	6.93	12.9	9.76	4.29	3.31	3.24	3.18
Sales of water heating units - Electric	0	0.892	12.3	37.3	42	42.4	42.4
Heat Pump (%)							
Sales of water heating units - Electric	13.3	25.8	34.3	53.6	57.3	57.5	57.5
Resistance (%)							
Sales of water heating units - Gas Furnace	86.7	73.2	53.3	9.02	0.593	0.008	0
(%)							
Sales of water heating units - Other (%)	0.036	0.089	0.089	0.089	0.088	0.088	0.089
Sales of cooking units - Electric	35.7	49.4	91.3	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	64.3	50.6	8.66	0.436	0	0	0
Residential HVAC investment in 2020s vs.		7.71	9.81				
REF - Cumulative 5-yr (billion \$2018)							

Table 44: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.384	6.16	30.1	79.2	88.5	89.1	89.1
Heat Pump (%)							
Sales of space heating units - Electric	1.64	3.48	5.48	9.74	10.5	10.6	10.6
Resistance (%)							
Sales of space heating units - Gas (%)	95.4	88	64	11.1	1.06	0.368	0.359
Sales of space heating units - Fossil (%)	2.54	2.36	0.454	0.019	0	0	0
Sales of water heating units - Electric	0.161	1.36	14.4	43	48.4	48.8	48.8
Heat Pump (%)							
Sales of water heating units - Electric	1.64	4.19	17	45.3	50.6	51	51
Resistance (%)							
Sales of water heating units - Gas (%)	98.1	94.3	68.5	11.6	0.763	0.01	0
Sales of water heating units - Other (%)	0.093	0.184	0.185	0.186	0.185	0.186	0.186
Sales of cooking units - Electric	41	54.2	82.9	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	59	45.8	17.1	11.4	11.1	11.1	11.1
Commercial HVAC investment in 2020s -		29,341	32,040				
Cumulative 5-yr (million \$2018)							

Table 45: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Table 40. LTRE Occitation Tilliam 2. Olda	II LICCUI ICIL	y acriciat	ing capacit	y			
Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	8,466	769	0	0	0	0	0
Installed thermal - Natural gas (MW)	7,058	8,028	8,948	9,964	12,233	15,630	16,222
Installed thermal - Nuclear (MW)	4,314	3,502	3,502	5,910	5,910	13,398	16,867
Installed renewables - Rooftop PV (MW)	79.1	119	158	208	269	339	419
Installed renewables - Solar - Base land	76.9	76.9	76.9	76.9	576	1,124	1,124
use assumptions (MW)							
Installed renewables - Wind - Base land	2,562	2,939	6,519	6,519	7,423	7,656	7,839
use assumptions (MW)							
Installed renewables - Solar -	76.9	76.9	76.9	308	308	1,260	1,260
Constrained land use assumptions (MW)							
Installed renewables - Wind - Constrained	2,562	2,705	5,436	5,505	6,268	6,657	6,817
land use assumptions (MW)							
Installed renewables - Offshore Wind -	0	0	0	0	0	0	0
Constrained land use assumptions (MW)							
Capital invested - Solar PV - Base (billion		0	0	0	0.519	0.537	0
\$2018)							
Capital invested - Wind - Base (billion		0.555	4.61	0	0.985	0.262	0.194
\$2018)							
Capital invested - Solar PV - Constrained		0	0	0.254	0	0.933	0
(billion \$2018)							
Capital invested - Wind - Constrained		0.211	3.64	0.086	0.901	0.436	0.169
(billion \$2018)							

Table 46: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	155	155	155	155	1,006	1,937	1,937
Wind - Base land use assumptions (GWh)	9,704	11,014	22,540	22,540	25,227	25,977	26,570
OffshoreWind - Base land use	0	0	0	0	0	0	0
assumptions (GWh)							
Solar - Constrained land use assumptions	155	155	155	549	549	2,170	2,170
(GWh)							
Wind - Constrained land use assumptions	9,704	10,194	19,079	19,327	21,853	23,145	23,668
(GWh)							
OffshoreWind - Constrained land use	0	0	0	0	0	0	0
assumptions (GWh)							

Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests

Iable 41: E+RE- scenario - PILLAR 6: Land Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate							-202
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-518
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-4,236
rotation length (1000 tCO2e/y)							•
Carbon sink potential - Low - Improve							-615
plantations (1000 tCO2e/y)							0.0
Carbon sink potential - Low - Increase							-2,521
retention of HWP (1000 tCO2e/y)							2,021
Carbon sink potential - Low - Increase							-529
trees outside forests (1000 tC02e/y)							-527
Carbon sink potential - Low - Reforest							-472
cropland (1000 tCO2e/y)							-412
							-361
Carbon sink potential - Low - Reforest							-361
pasture (1000 tC02e/y)							4 500
Carbon sink potential - Low - Restore							-1,529
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-10,983
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-303
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-1,812
deforestation (1000 tC02e/y)							
Carbon sink potential - Mid - Extend							-7,632
rotation length (1000 tCO2e/y)							,
Carbon sink potential - Mid - Improve							-901
plantations (1000 tC02e/y)							701
Carbon sink potential - Mid - Increase							-5,042
retention of HWP (1000 tCO2e/y)							-3,042
							-1,020
Carbon sink potential - Mid - Increase							-1,020
trees outside forests (1000 tC02e/y)							700
Carbon sink potential - Mid - Reforest							-708
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-2,560
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-3,033
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-23,011
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Accelerate							-403
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-3,106
deforestation (1000 tCO2e/y)							-,
Carbon sink potential - High - Extend							-11,028
rotation length (1000 tCO2e/y)							11,020
Carbon sink potential - High - Improve							-1,209
plantations (1000 tCO2e/y)							-1,209
Carbon sink potential - High - Increase							-7,563
							-1,505
retention of HWP (1000 tC02e/y)							4 544
Carbon sink potential - High - Increase							-1,511
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest							-944
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-4,759
pasture (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-35,061
counting overlap) (1000 tCO2e/y)							•
Carbon sink potential - High - Restore			+				-4,537
productivity (1000 tCO2e/y)							.,001
p. 3445tivity (1300 t0020/4)							

Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - Low - Accelerate regeneration (1000							33
hectares) Land impacted for carbon sink potential -							395
Low - Avoid deforestation (over 30 years)							373
(1000 hectares)							
Land impacted for carbon sink potential -							2,155
Low - Extend rotation length (1000							,
hectares)							
Land impacted for carbon sink potential -							223
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares) Land impacted for carbon sink potential -							75.6
Low - Increase trees outside forests							13.0
(1000 hectares)							
Land impacted for carbon sink potential -							31.2
Low - Reforest cropland (1000 hectares)							0
Land impacted for carbon sink potential -							23.4
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							910
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,845
Low - Total impacted (over 30 years)							
(1000 hectares)							/05
Land impacted for carbon sink potential - Mid - Accelerate regeneration (1000							49.5
hectares)							
Land impacted for carbon sink potential -							408
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,889
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							335
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000 hectares)							
Land impacted for carbon sink potential -							110
Mid - Increase trees outside forests (1000							110
hectares)							
Land impacted for carbon sink potential -							46.8
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							169
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,833
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,840
Mid - Total impacted (over 30 years) (1000 hectares)							
Land impacted for carbon sink potential -	+						44
High - Accelerate regeneration (1000							66
hectares)							
Land impacted for carbon sink potential -		+					421
High - Avoid deforestation (over 30 years)							,
(1000 hectares)							

Table 47: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							5,624
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							445
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							144
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							62.4
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,504
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							8,401
High - Total impacted (over 30 years)							
(1000 hectares)							

Table 48: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-699
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-2,176
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-74
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-2,949
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-699
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-4,144
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-148
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-4,990
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink - Moderate							292
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							1,392
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							135
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							1,818
deployment - Total (1000 hectares)							

Table 48: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							292
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							2,649
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							269
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							3,209
Aggressive deployment - Total (1000							
hectares)							

Table 49: E-B+ scenario - IMPACTS - Health							
Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution - Fuel Comb - Electric Generation - Coal (deaths)		115	0.107	0.105	0.09	0.062	0.005
Premature deaths from air pollution - Fuel Comb - Electric Generation - Natural Gas (deaths)		29.7	16.9	10	6.95	3.15	1.05
Premature deaths from air pollution - Mobile - On-Road (deaths)		306	307	296	265	210	143
Premature deaths from air pollution - Gas Stations (deaths)		26.7	26.8	25.6	22.8	17.9	12.2
Premature deaths from air pollution - Fuel Comb - Residential - Natural Gas (deaths)		78.6	72.5	65.6	56.7	44.5	30.7
Premature deaths from air pollution - Fuel Comb - Residential - Oil (deaths)		3.92	3.8	3.65	3.23	2.45	1.64
Premature deaths from air pollution - Fuel Comb - Residential - Other (deaths)		10	10.4	10.6	10.1	8.32	6.07
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Coal (deaths)		5.87	5.62	5.34	5.04	4.73	4.41
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (deaths)		53.6	51.6	49.1	44.4	37	28
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Oil (deaths)		4.26	3.89	3.52	3.03	2.48	1.95
Premature deaths from air pollution - Fuel Comb - Comm/Institutional - Other (deaths)		3.76	3.36	2.98	2.61	2.25	1.91
Premature deaths from air pollution - Industrial Processes - Coal Mining (deaths)		1.06	0.382	0.378	0.371	0.369	0.358
Premature deaths from air pollution - Industrial Processes - Oil & Gas Production (deaths)		88.8	80.1	69.1	60.1	52.9	37
Monetary damages from air pollution - Fuel Comb - Electric Generation - Coal (million \$2019)		1,018	0.945	0.929	0.796	0.545	0.041
Monetary damages from air pollution - Fuel Comb - Electric Generation - Natural Gas (million \$2019)		263	150	88.6	61.6	27.9	9.31
Monetary damages from air pollution - Mobile - On-Road (million \$2019)		2,716	2,725	2,633	2,356	1,865	1,273
Monetary damages from air pollution - Gas Stations (million \$2019)		237	237	227	202	159	108

Table 49: E-B+ scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Fuel Comb - Residential - Natural Gas (million \$2019)		696	642	582	502	395	272
Monetary damages from air pollution - Fuel Comb - Residential - Oil (million \$2019)		34.7	33.7	32.4	28.6	21.8	14.6
Monetary damages from air pollution - Fuel Comb - Residential - Other (million \$2019)		88.9	92.1	93.9	89.4	73.8	53.8
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Coal (million \$2019)		52	49.8	47.3	44.6	41.9	39
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Natural Gas (million \$2019)		474	457	434	393	328	248
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Oil (million \$2019)		37.7	34.4	31.2	26.8	21.9	17.3
Monetary damages from air pollution - Fuel Comb - Comm/Institutional - Other (million \$2019)		33.3	29.8	26.4	23.1	19.9	16.9
Monetary damages from air pollution - Industrial Processes - Coal Mining (million \$2019)		9.33	3.37	3.34	3.27	3.26	3.16
Monetary damages from air pollution - Industrial Processes - Oil & Gas Production (million \$2019)		789	711	614	534	470	329

Table 50: E-B+ scenario - IMPACTS - Jobs

2020	2025	2030	2035	2040	2045	2050
	797	883	675	387	115	1,702
	7,567	9,664	11,084	10,800	12,787	16,493
	5,231	5,752	5,539	4,583	4,714	7,077
	4,486	3,283	2,434	1,822	1,244	685
	393	545	1,057	1,002	1,493	1,901
	903	1,086	653	587	488	598
	4,696	5,201	6,320	6,477	7,813	12,817
	3,747	3,735	4,303	4,175	4,820	6,574
	9,727	10,605	10,692	11,181	12,614	16,757
	2,216	2,134	1,631	1,058	514	8,123
	0	2,759	282	475	613	2,573
	1,528	195	0	0	0	0
	8,443	10,633	14,151	14,972	18,608	25,878
	9,109	6,712	5,373	5,031	3,886	2,719
	2,009	1,739	1,712	1,685	1,659	1,633
	8,835	7,554	6,475	5,550	4,263	2,531
	971	1,286	3,910	2,690	4,744	5,241
	4,435	7,741	9,223	9,553	11,802	15,905
	15,595	17,168	17,939	16,973	18,911	26,772
	11,374	12,567	13,271	12,883	14,692	20,152
	8,281	8,624	8,986	8,657	9,655	13,577
	2,012	2,098	2,231	2,176	2,458	3,537
	285	297	330	325	373	565
	2020	797 7,567 5,231 4,486 393 903 4,696 3,747 9,727 2,216 0 1,528 8,443 9,109 2,009 8,835 971 4,435 15,595 11,374 8,281 2,012	797 883 7,567 9,664 5,231 5,752 4,486 3,283 393 545 903 1,086 4,696 5,201 3,747 3,735 9,727 10,605 2,216 2,134 0 2,759 1,528 195 8,443 10,633 9,109 6,712 2,009 1,739 8,835 7,554 971 1,286 4,435 7,741 15,595 17,168 11,374 12,567 8,281 8,624 2,012 2,098	797 883 675 7,567 9,664 11,084 5,231 5,752 5,539 4,486 3,283 2,434 393 545 1,057 903 1,086 653 4,696 5,201 6,320 3,747 3,735 4,303 9,727 10,605 10,692 2,216 2,134 1,631 0 2,759 282 1,528 195 0 8,443 10,633 14,151 9,109 6,712 5,373 2,009 1,739 1,712 8,835 7,554 6,475 971 1,286 3,910 4,435 7,741 9,223 15,595 17,168 17,939 11,374 12,567 13,271 8,281 8,624 8,986 2,012 2,098 2,231	797 883 675 387 7,567 9,664 11,084 10,800 5,231 5,752 5,539 4,583 4,486 3,283 2,434 1,822 393 545 1,057 1,002 903 1,086 653 587 4,696 5,201 6,320 6,477 3,747 3,735 4,303 4,175 9,727 10,605 10,692 11,181 2,216 2,134 1,631 1,058 0 2,759 282 475 1,528 195 0 0 8,443 10,633 14,151 14,972 9,109 6,712 5,373 5,031 2,009 1,739 1,712 1,685 8,835 7,554 6,475 5,550 971 1,286 3,910 2,690 4,435 7,741 9,223 9,553 15,595 17,168 17,939<	797 883 675 387 115 7,567 9,664 11,084 10,800 12,787 5,231 5,752 5,539 4,583 4,714 4,486 3,283 2,434 1,822 1,244 393 545 1,057 1,002 1,493 903 1,086 653 587 488 4,696 5,201 6,320 6,477 7,813 3,747 3,735 4,303 4,175 4,820 9,727 10,605 10,692 11,181 12,614 2,216 2,134 1,631 1,058 514 0 2,759 282 475 613 1,528 195 0 0 0 8,443 10,633 14,151 14,972 18,608 9,109 6,712 5,373 5,031 3,886 2,009 1,739 1,712 1,685 1,659 8,835 7,554 6,47

Table 50: E-B+ scenario - IMPACTS - Jobs (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Related work experience - All sectors - None (jobs)		5,404	5,905	6,172	5,912	6,632	9,356
Related work experience - All sectors - Up to 1 year (jobs)		7,370	8,089	8,561	8,059	9,003	13,060
Related work experience - All sectors - 1 to 4 years (jobs)		13,636	14,700	15,397	14,833	16,684	23,222
Related work experience - All sectors - 4 to 10 years (jobs)		8,773	9,520	9,980	9,668	10,919	15,048
Related work experience - All sectors - Over 10 years (jobs)		2,363	2,539	2,646	2,543	2,852	3,919
On-the-Job Training - All sectors - None (jobs)		2,062	2,198	2,329	2,214	2,485	3,509
On-the-Job Training - All sectors - Up to 1 year (jobs)		25,077	26,979	28,222	26,900	30,040	42,741
On-the-Job Training - All sectors - 1 to 4 years (jobs)		7,697	8,503	8,936	8,687	9,874	13,393
On-the-Job Training - All sectors - 4 to 10 years (jobs)		2,358	2,685	2,863	2,829	3,260	4,382
On-the-Job Training - All sectors - Over 10 years (jobs)		352	388	407	383	429	579
On-Site or In-Plant Training - All sectors - None (jobs)		6,050	6,554	6,904	6,613	7,462	10,571
On-Site or In-Plant Training - All sectors - Up to 1 year (jobs)		22,722	24,470	25,610	24,433	27,300	38,646
On-Site or In-Plant Training - All sectors - 1 to 4 years (jobs)		5,988	6,598	6,932	6,714	7,611	10,366
On-Site or In-Plant Training - All sectors - 4 to 10 years (jobs)		2,479	2,782	2,942	2,894	3,306	4,453
On-Site or In-Plant Training - All sectors - Over 10 years (jobs)		308	348	368	360	411	567
Wage income - All (million \$2019)		2,152	2,343	2,475	2,423	2,750	3,868

Table 51: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	809	757	687	629	583	530	468
Final energy use - Residential (PJ)	562	525	498	472	439	392	339
Final energy use - Commercial (PJ)	316	311	304	297	288	275	260
Final energy use - Industry (PJ)	501	510	521	522	536	546	548

Table 52: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.21	4.23	5.79	5.99	8.36	8.82
Cumulative 5-yr (billion \$2018)							

Table 53: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle stocks - LDV – EV (1000 units)	30.1	232	433	1,366	2,300	4,365	6,431
Vehicle stocks - LDV – All others (1000 units)	8,406	8,406	8,406	7,974	7,541	5,811	4,081
Light-duty vehicle capital costs vs. REF - Cumulative 5-yr (million \$2018)		0	260	547	1,847	5,817	8,473
Public EV charging plugs - DC Fast (1000 units)	0.242		0.872		4.63		13
Public EV charging plugs - L2 (1000 units)	0.857		21		111		311

Table 54: E-B+ scenario	- PTI I AR 1. Efficiency	//Flectrification .	- Residential
14015 J4. L-DT 3651101 10	- FILLAN I. LIIIGIBIIGV	// LIGGII IIIGUIIUII :	· nealuelliui

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	2.17	5.44	8.25	17.5	39.1	65.5	80.9
Heat Pump (%)							
Sales of space heating units - Electric	5.77	9.38	9.14	8.42	6.65	4.54	3.4
Resistance (%)							
Sales of space heating units - Gas (%)	85.1	72	69.7	62.4	45	23.5	11
Sales of space heating units - Fossil (%)	6.93	13.2	12.9	11.7	9.27	6.38	4.68
Sales of water heating units - Electric	0	0.449	1.69	5.81	15.8	28.5	36
Heat Pump (%)							
Sales of water heating units - Electric	13.3	25.5	26.2	29.4	37	46.8	52.5
Resistance (%)							
Sales of water heating units - Gas Furnace	86.7	74	72	64.7	47.1	24.6	11.4
(%)							
Sales of water heating units - Other (%)	0.036	0.089	0.089	0.089	0.089	0.089	0.089
Sales of cooking units - Electric	35.5	37.1	43	58.6	80.3	93.6	98.3
Resistance (%)							
Sales of cooking units - Gas (%)	64.5	62.9	57	41.4	19.7	6.37	1.71
Residential HVAC investment in 2020s vs.		7.67	9.61				
REF - Cumulative 5-yr (billion \$2018)							

Table 55: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.384	4.93	7.53	16.1	36.4	61.5	76.2
Heat Pump (%)							
Sales of space heating units - Electric	1.64	3.4	3.62	4.32	6.01	8.19	9.45
Resistance (%)							
Sales of space heating units - Gas (%)	95.4	88.9	86.3	77.6	56.5	29.8	14.1
Sales of space heating units - Fossil (%)	2.54	2.74	2.58	1.99	1.1	0.499	0.282
Sales of water heating units - Electric	0.161	0.855	2.27	6.98	18.4	32.9	41.5
Heat Pump (%)							
Sales of water heating units - Electric	1.64	3.69	5.06	9.72	21	35.3	43.8
Resistance (%)							
Sales of water heating units - Gas (%)	98.1	95.3	92.5	83.1	60.4	31.6	14.6
Sales of water heating units - Other (%)	0.093	0.184	0.185	0.186	0.185	0.186	0.186
Sales of cooking units - Electric	41	45.8	49.8	60.5	75.4	84.5	87.7
Resistance (%)							
Sales of cooking units - Gas (%)	59	54.2	50.2	39.5	24.6	15.5	12.3
Commercial HVAC investment in 2020s -		29,338	32,023				
Cumulative 5-yr (million \$2018)							

Table 56: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	8,466	2,384	0	0	0	0	0
Installed thermal - Natural gas (MW)	7,052	8,407	8,334	7,807	5,707	7,034	6,924
Installed thermal - Nuclear (MW)	4,314	3,502	3,502	3,502	3,502	3,502	3,502
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0

Table 57: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0

Table 58: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	18
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	1
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	8
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	1
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	1
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0
Conversion capital investment -		0	0	0	0	0	25,514
Cumulative 5-yr (million \$2018)							
Biomass purchases (million \$2018/y)	·	0	0	0	0	0	2,362

Table 59: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	3.24	3.35	6.64	6.84	28.4
Annual - BECCS (MMT)		0	0	0	0	0	21.4
Annual - NGCC (MMT)		0	0	0	0	0	0
Annual - Cement and lime (MMT)		0	3.24	3.35	6.64	6.84	7.07
Cumulative - All (MMT)		0	3.24	6.59	13.2	20.1	48.5
Cumulative - BECCS (MMT)		0	0	0	0	0	21.4
Cumulative - NGCC (MMT)		0	0	0	0	0	0
Cumulative - Cement and lime (MMT)		0	3.24	6.59	13.2	20.1	27.1

Table 60: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
Trunk (km)		0	437	437	437	437	437
Spur (km)		0	201	201	314	314	1,173
All (km)		0	638	638	751	751	1,610
Cumulative investment - Trunk (million \$2018)		0	1,376	1,376	1,376	1,716	1,716
Cumulative investment - Spur (million \$2018)		0	200	204	315	320	1,128
Cumulative investment - All (million \$2018)		0	1,576	1,580	1,691	2,036	2,844

Table 61: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Thom	0000	0005	0000	0005	00/0	00/5	0050
Item	2020	2025	2030	2035	2040	2045	2050
Annual (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests

Table 62: E-B+ scenario - PILLAR 6: Land s			0000	0005	00/0	00/5	2050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate							-202
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-518
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-4,236
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-615
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-2,521
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-529
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-472
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-361
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,529
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-10,983
counting overlap) (1000 tC02e/y)							,
Carbon sink potential - Mid - Accelerate							-303
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-1,812
deforestation (1000 tCO2e/y)							1,012
Carbon sink potential - Mid - Extend							-7,632
rotation length (1000 tC02e/y)							1,002
Carbon sink potential - Mid - Improve		+					-901
plantations (1000 tCO2e/y)							-701
Carbon sink potential - Mid - Increase							-5,042
· ·							-5,042
retention of HWP (1000 tC02e/y)							1 000
Carbon sink potential - Mid - Increase							-1,020
trees outside forests (1000 tC02e/y)							700
Carbon sink potential - Mid - Reforest							-708
cropland (1000 tC02e/y)							0.5/0
Carbon sink potential - Mid - Reforest							-2,560
pasture (1000 tC02e/y)							
Carbon sink potential - Mid - Restore							-3,033
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-23,011
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Accelerate							-403
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-3,106
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-11,028
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-1,209
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-7,563
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,511
trees outside forests (1000 tCO2e/y)							•
Carbon sink potential - High - Reforest							-944
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest			+				-4,759
pasture (1000 tC02e/y)							7,107
Carbon sink potential - High - All (not		-					-35,061
counting overlap) (1000 tC02e/y)							33,001
Carbon sink potential - High - Restore						+	-4,537
productivity (1000 tCO2e/y)							-4,537
productivity (1000 to02e/y)							

Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050 33
Land impacted for carbon sink potential - Low - Accelerate regeneration (1000							33
Land impacted for carbon sink potential - Low - Avoid deforestation (over 30 years)							395
(1000 hectares) Land impacted for carbon sink potential -							2,155
Low - Extend rotation length (1000 hectares)							,
Land impacted for carbon sink potential - Low - Improve plantations (1000 hectares)							223
Land impacted for carbon sink potential - Low - Increase retention of HWP (1000 hectares)							0
Land impacted for carbon sink potential - Low - Increase trees outside forests							75.6
(1000 hectares) Land impacted for carbon sink potential -							31.2
Low - Reforest cropland (1000 hectares) Land impacted for carbon sink potential - Low - Reforest pasture (1000 hectares)							23.4
Land impacted for carbon sink potential - Low - Restore productivity (1000 hectares)							910
Land impacted for carbon sink potential - Low - Total impacted (over 30 years) (1000 hectares)							3,845
Land impacted for carbon sink potential - Mid - Accelerate regeneration (1000 hectares)							49.5
Land impacted for carbon sink potential - Mid - Avoid deforestation (over 30 years) (1000 hectares)							408
Land impacted for carbon sink potential - Mid - Extend rotation length (1000 hectares)							3,889
Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares)							335
Land impacted for carbon sink potential - Mid - Increase retention of HWP (1000 hectares)							0
Land impacted for carbon sink potential - Mid - Increase trees outside forests (1000 hectares)							110
Land impacted for carbon sink potential - Mid - Reforest cropland (1000 hectares)							46.8
Land impacted for carbon sink potential - Mid - Reforest pasture (1000 hectares)							169
Land impacted for carbon sink potential - Mid - Restore productivity (1000 hectares)							1,833
Land impacted for carbon sink potential - Mid - Total impacted (over 30 years) (1000 hectares)							6,840
Land impacted for carbon sink potential - High - Accelerate regeneration (1000 hectares)							66
Land impacted for carbon sink potential - High - Avoid deforestation (over 30 years) (1000 hectares)							421

Table 62: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							5,624
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							445
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							144
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							62.4
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,504
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							8,401
High - Total impacted (over 30 years)							
(1000 hectares)							

Table 63: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-809
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-2,042
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-69.1
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							0
deployment - Cropland to woody energy							
crops (1000 tC02e/y)							
Carbon sink potential - Moderate							0
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Moderate							-2,920
deployment - Total (1000 tCO2e/y)							,
Carbon sink potential - Aggressive		+					-809
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-3,890
deployment - Cropland measures (1000							0,0,0
tCO2e/y)							
Carbon sink potential - Aggressive							-138
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Cropland to woody energy							J
crops (1000 tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Pasture to energy crops							U
(1000 tCO2e/y)							
Carbon sink potential - Aggressive		+		-			-4,837
deployment - Total (1000 tC02e/y)							-4,031
deployment - Total (1000 to026/y)							

Table 63: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink - Moderate							462
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							1,306
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							126
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							9.95
deployment - Cropland to woody energy							
crops (1000 hectares)							
Land impacted for carbon sink - Moderate							39
deployment - Pasture to energy crops							
(1000 hectares)							
Land impacted for carbon sink - Moderate							1,943
deployment - Total (1000 hectares)							
Land impacted for carbon sink -							462
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							6,140
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							251
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							9.95
Aggressive deployment - Cropland to							
woody energy crops (1000 hectares)							
Land impacted for carbon sink -							39
Aggressive deployment - Pasture to							
energy crops (1000 hectares)							
Land impacted for carbon sink -							6,902
Aggressive deployment - Total (1000							
hectares)							

Table 64: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		378	231	179	156	148	140
Fuel Comb - Electric Generation - Coal							
(deaths)							
Premature deaths from air pollution -		27.2	30.1	40.2	37.9	34.6	30.8
Fuel Comb - Electric Generation - Natural							
Gas (deaths)							
Premature deaths from air pollution -		305	310	315	321	327	333
Mobile - On-Road (deaths)							
Premature deaths from air pollution - Gas		26.6	27	27.2	27.7	28	28.3
Stations (deaths)							
Premature deaths from air pollution -		78.1	72.6	67.7	64.2	61.8	59.6
Fuel Comb - Residential - Natural Gas							
(deaths)							
Premature deaths from air pollution -		3.81	3.27	2.37	1.51	0.816	0.434
Fuel Comb - Residential - Oil (deaths)							
Premature deaths from air pollution -		9.73	10	10.4	10.8	10.7	10.4
Fuel Comb - Residential - Other (deaths)							
Premature deaths from air pollution -		6.14	6.15	6.13	6.08	6.03	5.94
Fuel Comb - Comm/Institutional - Coal							
(deaths)							

Table 64: REF scenario - IMPACTS - Health (continued)

Tuble 04. NET beending Introducting	tiriacaj					
	2020 2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -	54.1	52.6	47.9	42.2	38.7	37.8
Fuel Comb - Comm/Institutional - Natural						
Gas (deaths)						
Premature deaths from air pollution -	4.39	4.31	4.08	3.75	3.5	3.37
Fuel Comb - Comm/Institutional - Oil						
(deaths)						
Premature deaths from air pollution -	3.92	3.99	4.06	4.11	4.16	4.21
Fuel Comb - Comm/Institutional - Other						
(deaths)						
Premature deaths from air pollution -	2.35	1.61	1.29	1.22	1.17	1.08
Industrial Processes - Coal Mining						
(deaths)						
Premature deaths from air pollution -	89.3	94	96	91.6	90.7	84.7
Industrial Processes - Oil & Gas						
Production (deaths)						
Monetary damages from air pollution -	3,353	2,045	1,583	1,384	1,308	1,245
Fuel Comb - Electric Generation - Coal						
(million \$2019)						
Monetary damages from air pollution -	241	267	356	336	306	272
Fuel Comb - Electric Generation - Natural						
Gas (million \$2019)						
Monetary damages from air pollution -	2,712	2,758	2,801	2,856	2,909	2,963
Mobile - On-Road (million \$2019)						
Monetary damages from air pollution -	236	239	241	245	248	250
Gas Stations (million \$2019)						
Monetary damages from air pollution -	692	643	600	569	548	528
Fuel Comb - Residential - Natural Gas						
(million \$2019)						
Monetary damages from air pollution -	33.8	29	21	13.4	7.24	3.85
Fuel Comb - Residential - Oil (million						
\$2019)						
Monetary damages from air pollution -	86.2	88.8	92.6	95.4	94.5	92.2
Fuel Comb - Residential - Other (million						
\$2019)						
Monetary damages from air pollution -	54.3	54.5	54.3	53.9	53.3	52.6
Fuel Comb - Comm/Institutional - Coal						
(million \$2019)						
Monetary damages from air pollution -	479	466	424	373	343	335
Fuel Comb - Comm/Institutional - Natural						
Gas (million \$2019)						
Monetary damages from air pollution -	38.9	38.1	36.1	33.2	31	29.8
Fuel Comb - Comm/Institutional - Oil						
(million \$2019)						
Monetary damages from air pollution -	34.7	35.3	35.9	36.4	36.8	37.3
Fuel Comb - Comm/Institutional - Other						
(million \$2019)						
Monetary damages from air pollution -	20.8	14.2	11.4	10.7	10.3	9.57
Industrial Processes - Coal Mining						
(million \$2019)						
Monetary damages from air pollution -	793	835	852	813	806	752
Industrial Processes - Oil & Gas						
Production (million \$2019)						
-						

Table 65: REF scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		786	765	763	730	730	742
By economic sector - Construction (jobs)		7,184	7,300	8,251	9,286	9,845	9,796
By economic sector - Manufacturing		3,600	3,704	3,958	4,342	4,190	3,996
(jobs)							
By economic sector - Mining (jobs)		4,737	3,825	3,167	2,569	2,168	1,740

Table 65: REF scenario - IMPACTS - Jobs (continued)

Table 65. KEF SCEITUTTO - IMPACTS - JUDS (C	onunueuj						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Other (jobs)		321	347	423	537	591	658
By economic sector - Pipeline (jobs)		929	970	984	928	939	930
By economic sector - Professional (jobs)		4,390	4,036	4,278	4,871	5,052	4,942
By economic sector - Trade (jobs)		3,779	3,296	3,273	3,474	3,522	3,400
By economic sector - Utilities (jobs)		10,542	9,554	11,053	12,543	12,921	11,834
By resource sector - Biomass (jobs)		2,148	2,060	1,974	1,871	1,858	1,843
By resource sector - CO2 (jobs)		0	0	0	0	0	0
By resource sector - Coal (jobs)		2,411	1,219	845	804	767	294
By resource sector - Grid (jobs)		9,620	9,004	11,456	13,655	14,956	14,402
By resource sector - Natural Gas (jobs)		9,510	9,371	10,307	10,756	10,553	9,594
By resource sector - Nuclear (jobs)		2,009	1,739	1,712	1,685	1,435	1,096
By resource sector - Oil (jobs)		8,870	7,678	6,808	6,280	5,934	5,581
By resource sector - Solar (jobs)			438	569	567	595	1,055
By resource sector - Wind (jobs)		1,700	2,287	2,480	3,662	3,860	4,171
By education level - All sectors - High		15,068	14,167	15,229	16,524	16,869	16,143
school diploma or less (jobs)							
By education level - All sectors -		10,985	10,295	11,180	12,294	12,570	11,975
Associates degree or some college (jobs)							
By education level - All sectors -		7,993	7,308	7,626	8,181	8,218	7,743
Bachelors degree (jobs)							
By education level - All sectors - Masters		1,952	1,781	1,861	2,007	2,023	1,912
or professional degree (jobs)							
By education level - All sectors - Doctoral		271	247	254	274	276	264
degree (jobs)							
Related work experience - All sectors -		5,247	4,908	5,280	5,748	5,865	5,597
None (jobs)							
Related work experience - All sectors - Up		7,040	6,606	7,058	7,657	7,796	7,469
to 1 year (jobs)							
Related work experience - All sectors - 1		13,233	12,278	13,103	14,217	14,448	13,725
to 4 years (jobs)							
Related work experience - All sectors - 4		8,489	7,901	8,468	9,227	9,388	8,916
to 10 years (jobs)							
Related work experience - All sectors -		2,259	2,103	2,241	2,431	2,460	2,331
Over 10 years (jobs)							
On-the-Job Training - All sectors - None		1,981	1,831	1,923	2,069	2,089	1,987
(jobs)							
On-the-Job Training - All sectors - Up to 1		24,155	22,435	23,853	25,810	26,182	24,902
year (jobs)							
On-the-Job Training - All sectors - 1 to 4		7,473	7,010	7,605	8,339	8,528	8,121
years (jobs)							
On-the-Job Training - All sectors - 4 to 10		2,336	2,213	2,440	2,705	2,798	2,683
years (jobs)							
On-the-Job Training - All sectors - Over 10		325	309	329	356	360	344
years (jobs)							
On-Site or In-Plant Training - All sectors -		5,776	5,376	5,718	6,207	6,292	5,988
None (jobs)							
On-Site or In-Plant Training - All sectors -		21,932	20,377	21,693	23,486	23,840	22,675
Up to 1 year (jobs)							
On-Site or In-Plant Training - All sectors -		5,810	5,447	5,896	6,453	6,595	6,283
1 to 4 years (jobs)							
On-Site or In-Plant Training - All sectors -		2,451	2,313	2,529	2,786	2,870	2,746
4 to 10 years (jobs)							
On-Site or In-Plant Training - All sectors -		300	285	314	349	361	346
Over 10 years (jobs)							
Wage income - All (million \$2019)		2,100	1,974	2,136	2,347	2,417	2,324

Table 66: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

••							
Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	808	759	697	659	657	674	697

Table 66: REF scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Residential (PJ)	562	526	505	490	480	473	466
Final energy use - Commercial (PJ)	316	316	313	306	298	298	306
Final energy use - Industry (PJ)	502	527	542	555	576	598	623

Table 67: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.63	4.71	5.78	5.97	5.98	6.15
Cumulative 5-yr (billion \$2018)							

Table 68: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	1.35	8.6	8.97	9.55	9.94	10.2	10.7
Heat Pump (%)							
Sales of space heating units - Electric	5.84	9.06	8.98	8.84	8.56	8.18	7.87
Resistance (%)							
Sales of space heating units - Gas (%)	85.6	70	70	69.8	69.7	69.7	69.7
Sales of space heating units - Fossil (%)	7.19	12.3	12	11.8	11.8	11.8	11.8
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	13.3	25.1	24.9	24.9	24.9	24.8	24.8
Resistance (%)							
Sales of water heating units - Gas Furnace	86.7	74.8	75	75	75	75.1	75.1
(%)							
Sales of water heating units - Other (%)	0.036	0.089	0.089	0.09	0.09	0.09	0.09
Sales of cooking units - Electric	34.9	34.9	34.9	34.9	34.9	34.9	34.9
Resistance (%)							
Sales of cooking units - Gas (%)	65.1	65.1	65.1	65.1	65.1	65.1	65.1
Residential HVAC investment in 2020s vs.		7.41	7.89				
REF - Cumulative 5-yr (billion \$2018)							

Table 69: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	0.384	11.5	43.9	70.8	75.3	75.8	75.8
Heat Pump (%)							
Sales of space heating units - Electric	1.64	4.29	8.99	17.2	22.8	23.7	23.8
Resistance (%)							
Sales of space heating units - Gas (%)	95.4	81.7	45.8	11.7	1.81	0.444	0.359
Sales of space heating units - Fossil (%)	2.54	2.52	1.3	0.232	0.026	0.001	0
Sales of water heating units - Electric	0.161	0.341	0.345	0.344	0.338	0.341	0.34
Heat Pump (%)							
Sales of water heating units - Electric	1.64	3.18	3.15	3.16	3.15	3.14	3.14
Resistance (%)							
Sales of water heating units - Gas (%)	98.1	96.3	96.3	96.3	96.3	96.3	96.3
Sales of water heating units - Other (%)	0.093	0.184	0.185	0.186	0.185	0.186	0.186
Sales of cooking units - Electric	41	44.2	44.3	44.3	44.3	44.4	44.5
Resistance (%)							
Sales of cooking units - Gas (%)	59	55.8	55.7	55.7	55.7	55.6	55.5
Commercial HVAC investment in 2020s -		29,025	30,109				
Cumulative 5-yr (million \$2018)							

Table 70: REF scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Installed thermal - Coal (MW)	8,466	4,847	2,384	2,384	2,384	2,384	0
Installed thermal - Natural gas (MW)	7,049	8,929	9,203	13,083	16,416	20,770	20,966
Installed thermal - Nuclear (MW)	4,314	3,502	3,502	3,502	3,502	2,350	2,350
Installed renewables - Rooftop PV (MW)	79.1	119	158	208	269	339	419

Table 70: REF scenario - PILLAR 2: Clean Electricity - Generating capacity (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Installed renewables - Solar - Base land use assumptions (MW)	76.9	76.9	76.9	76.9	76.9	76.9	76.9
Installed renewables - Wind - Base land use assumptions (MW)	2,489	2,489	4,587	5,175	7,424	7,649	7,841
Installed renewables - Wind - Constrained land use assumptions (MW)	72.8	72.8	72.8	72.8	72.8	72.8	72.8

Table 71: REF scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	155	155	155	155	155	155	155
Wind - Base land use assumptions (GWh)	9,704	9,704	16,851	18,794	25,463	26,190	26,812
OffshoreWind - Base land use	0	0	0	0	0	0	0
assumptions (GWh)							

Table 72: REF scenario - PILLAR 6: Land sinks - Forests - REF only

			٠,				
Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	-36.6		-17.7				-15.8
Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y)	-2.06		-3.7				-3.85
Business-as-usual carbon sink - Total (Mt CO2e/y)	-38.7		-21.4				-19.7

Table 73: REF scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)							-202
Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)							-518
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-4,236
Carbon sink potential - Low - Improve plantations (1000 tC02e/y)							-615
Carbon sink potential - Low - Increase retention of HWP (1000 tCO2e/y)							-2,521
Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)							-529
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							-472
Carbon sink potential - Low - Reforest pasture (1000 tCO2e/y)							-361
Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)							-1,529
Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)							-10,983
Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)							-303
Carbon sink potential - Mid - Avoid deforestation (1000 tCO2e/y)							-1,812
Carbon sink potential - Mid - Extend rotation length (1000 tC02e/y)							-7,632
Carbon sink potential - Mid - Improve plantations (1000 tC02e/y)							-901
Carbon sink potential - Mid - Increase retention of HWP (1000 tC02e/y)							-5,042
Carbon sink potential - Mid - Increase trees outside forests (1000 tC02e/y)							-1,020

Table 73: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Reforest							-708
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-2,560
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-3,033
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-23,011
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Accelerate							-403
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-3,106
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-11,028
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-1,209
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-7,563
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,511
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-944
cropland (1000 tC02e/y)							
Carbon sink potential - High - Reforest							-4,759
pasture (1000 tC02e/y)							•
Carbon sink potential - High - All (not							-35,061
counting overlap) (1000 tCO2e/y)							•
Carbon sink potential - High - Restore							-4,537
productivity (1000 tCO2e/y)							·
Land impacted for carbon sink potential -							33
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							395
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,155
Low - Extend rotation length (1000							,
hectares)							
Land impacted for carbon sink potential -							223
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							75.6
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							31.2
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							23.4
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							910
Low - Restore productivity (1000							,,0
hectares)							
Land impacted for carbon sink potential -							3,845
Low - Total impacted (over 30 years)							3,043
(1000 hectares)							
Land impacted for carbon sink potential -							49.5
Mid - Accelerate regeneration (1000							77.0
MIII - ACCERTATE LEGENETATION TOUCH							

Table 73: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Table 73: REF Scenario - PILLAR 6: Lana Si		ts (continu	euj				
Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							408
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,889
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							335
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							110
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -						+	46.8
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							169
Mid - Reforest pasture (1000 hectares)							107
Land impacted for carbon sink potential -							1,833
Mid - Restore productivity (1000							1,000
hectares)							
Land impacted for carbon sink potential -							6,840
Mid - Total impacted (over 30 years) (1000							0,040
hectares)							
Land impacted for carbon sink potential -							
							66
High - Accelerate regeneration (1000							
hectares)							/ 01
Land impacted for carbon sink potential -							421
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							5,624
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							445
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							144
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							62.4
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,504
High - Restore productivity (1000							•
hectares)							
Land impacted for carbon sink potential -							8,401
High - Total impacted (over 30 years)							٠,٠٠٠.
High - Total impacted (over 30 years) (1000 hectares)							